Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Using millions of emoji occurrences to learn an...
Search
Yuto Kamiwaki
December 16, 2018
Research
0
110
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
2018/12/17 文献紹介の発表内容
Yuto Kamiwaki
December 16, 2018
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
yuto_kamiwaki
0
120
Modeling Naive Psychology of Characters in Simple Commonsense Stories
yuto_kamiwaki
1
220
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
140
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
270
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
83
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
170
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
yuto_kamiwaki
0
110
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
yuto_kamiwaki
0
150
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
yuto_kamiwaki
0
250
Other Decks in Research
See All in Research
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
260
超高速データサイエンス
matsui_528
1
230
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
270
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
890
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
860
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
220
20250725-bet-ai-day
cipepser
3
540
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
390
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
140
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.4k
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
4
1.7k
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
490
Featured
See All Featured
Designing for humans not robots
tammielis
254
26k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Balancing Empowerment & Direction
lara
5
790
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Making Projects Easy
brettharned
120
6.5k
Faster Mobile Websites
deanohume
310
31k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.1k
Docker and Python
trallard
47
3.7k
Navigating Team Friction
lara
191
16k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Transcript
Using millions of emoji occurrences to learn any-domain representations for
detecting sentiment, emotion and sarcasm Nagaoka University of Technology Yuto Kamiwaki Literature Review
Literature • Using millions of emoji occurrences to learn any-domain
representations for detecting sentiment, emotion and sarcasm • Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, Sune Lehmann • EMNLP 2017 2
Abstract • sentiment analysis, emotion analysis and sarcasm classificationにおける8つのbenchmarkでSoTA達成 •
感情ラベルの多様性が以前のdistant supervisonのアプ ローチよりもパフォーマンスの向上をもたらすことを確認 3
Introduction • NLPのタスクでは,アノテーション済み(感情が付与された)の データは少ない. • Distant supervisionを用いてSoTAを達成している研究があ る. Distant supervision
: (http://web.stanford.edu/~jurafsky/mintz.pdf) ラベル付きデータの情報を手がかりに全く別のラベルなしデータからラベル付きの学 習データを生成し、モデルを学習する手法 4
Related work • Ekman, Plutchikなどの感情の理論を用いて手作業によって 分類 ◦ 感情の理解が難しく,時間がかかる. • official
emoji tables (Eisner et al., 2016)からembeddingす る手法 ◦ emojiの使われ方を考慮しない. • マルチタスク学習 ◦ データストレージの観点から問題あり. 5
Pretraining • 2013年1月から2017年6月までのTweet data(emojiあり) • Only English tweets without URL’s
are used for the pretraining dataset. • All tweets are tokenized on a word-by-word basis. 6
Model 7
Transfer Learning(ChainThaw) 8
Emoji Prediction 9
Benchmarking 10 8 Benchmarks(3tasks,5domains)
Benchmarking 11
Importance of emoji diversity 12 Pos/Neg Emoji:8 types DeepMoji:64 types
感情ラベルの多様性が重要 64種類のemojiの細かい ニュアンスを学習できている. (次ページの図を参照)
Importance of emoji diversity 13
Model architecture 14 Pretraining時点では,差がない benchmark時点では,Attention ありの方が精度が高い 低層の特徴へのアクセスが簡単 勾配消失がなく,学習可能
Analyzing the effect of pretraining 15 Pretraining+chainthawで語彙が 増加 ->word coverageが改善
Comparing with human-level agreement 16 Human:76.1% Deepmoji:82.4% Deepmojiの方が,精度 が高い (実験内容については,論文
を参照)
Conclusion • sentiment analysis, emotion analysis and sarcasm classificationにおける8つのbenchmarkでSoTA達成 •
感情ラベルの多様性が以前のdistant supervisonのアプ ローチよりもパフォーマンスの向上をもたらすことを確認 • Pretraining済みモデルを公開 ◦ (Demo : https://deepmoji.mit.edu/) 17