Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Using millions of emoji occurrences to learn an...
Search
Yuto Kamiwaki
December 16, 2018
Research
0
110
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
2018/12/17 文献紹介の発表内容
Yuto Kamiwaki
December 16, 2018
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
yuto_kamiwaki
0
120
Modeling Naive Psychology of Characters in Simple Commonsense Stories
yuto_kamiwaki
1
210
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
130
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
270
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
82
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
160
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
yuto_kamiwaki
0
110
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
yuto_kamiwaki
0
150
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
yuto_kamiwaki
0
250
Other Decks in Research
See All in Research
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
240
Integrating Static Optimization and Dynamic Nature in JavaScript (GPCE 2025)
tadd
0
110
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
170
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
380
投資戦略202508
pw
0
570
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
1.1k
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
210
ip71_contraflow_reconfiguration
stkmsd
0
110
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
440
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4k
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
250
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
360
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Why Our Code Smells
bkeepers
PRO
340
57k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
The Invisible Side of Design
smashingmag
302
51k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
230
22k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
Typedesign – Prime Four
hannesfritz
42
2.8k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Transcript
Using millions of emoji occurrences to learn any-domain representations for
detecting sentiment, emotion and sarcasm Nagaoka University of Technology Yuto Kamiwaki Literature Review
Literature • Using millions of emoji occurrences to learn any-domain
representations for detecting sentiment, emotion and sarcasm • Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, Sune Lehmann • EMNLP 2017 2
Abstract • sentiment analysis, emotion analysis and sarcasm classificationにおける8つのbenchmarkでSoTA達成 •
感情ラベルの多様性が以前のdistant supervisonのアプ ローチよりもパフォーマンスの向上をもたらすことを確認 3
Introduction • NLPのタスクでは,アノテーション済み(感情が付与された)の データは少ない. • Distant supervisionを用いてSoTAを達成している研究があ る. Distant supervision
: (http://web.stanford.edu/~jurafsky/mintz.pdf) ラベル付きデータの情報を手がかりに全く別のラベルなしデータからラベル付きの学 習データを生成し、モデルを学習する手法 4
Related work • Ekman, Plutchikなどの感情の理論を用いて手作業によって 分類 ◦ 感情の理解が難しく,時間がかかる. • official
emoji tables (Eisner et al., 2016)からembeddingす る手法 ◦ emojiの使われ方を考慮しない. • マルチタスク学習 ◦ データストレージの観点から問題あり. 5
Pretraining • 2013年1月から2017年6月までのTweet data(emojiあり) • Only English tweets without URL’s
are used for the pretraining dataset. • All tweets are tokenized on a word-by-word basis. 6
Model 7
Transfer Learning(ChainThaw) 8
Emoji Prediction 9
Benchmarking 10 8 Benchmarks(3tasks,5domains)
Benchmarking 11
Importance of emoji diversity 12 Pos/Neg Emoji:8 types DeepMoji:64 types
感情ラベルの多様性が重要 64種類のemojiの細かい ニュアンスを学習できている. (次ページの図を参照)
Importance of emoji diversity 13
Model architecture 14 Pretraining時点では,差がない benchmark時点では,Attention ありの方が精度が高い 低層の特徴へのアクセスが簡単 勾配消失がなく,学習可能
Analyzing the effect of pretraining 15 Pretraining+chainthawで語彙が 増加 ->word coverageが改善
Comparing with human-level agreement 16 Human:76.1% Deepmoji:82.4% Deepmojiの方が,精度 が高い (実験内容については,論文
を参照)
Conclusion • sentiment analysis, emotion analysis and sarcasm classificationにおける8つのbenchmarkでSoTA達成 •
感情ラベルの多様性が以前のdistant supervisonのアプ ローチよりもパフォーマンスの向上をもたらすことを確認 • Pretraining済みモデルを公開 ◦ (Demo : https://deepmoji.mit.edu/) 17