Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS D...
Search
Yuto Kamiwaki
June 27, 2018
Research
0
150
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
2018/06/28文献紹介の発表内容
Yuto Kamiwaki
June 27, 2018
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
yuto_kamiwaki
0
120
Modeling Naive Psychology of Characters in Simple Commonsense Stories
yuto_kamiwaki
1
220
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
yuto_kamiwaki
0
110
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
140
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
270
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
86
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
180
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
yuto_kamiwaki
0
110
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
yuto_kamiwaki
0
250
Other Decks in Research
See All in Research
AWSの耐久性のあるRedis互換KVSのMemoryDBについての論文を読んでみた
bootjp
1
460
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.6k
CoRL2025速報
rpc
4
4.2k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
500
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
170
[チュートリアル] 電波マップ構築入門 :研究動向と課題設定の勘所
k_sato
0
260
財務諸表監査のための逐次検定
masakat0
1
250
2026.01ウェビナー資料
elith
0
220
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.9k
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
160
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
120
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
What's in a price? How to price your products and services
michaelherold
247
13k
Building the Perfect Custom Keyboard
takai
2
690
Odyssey Design
rkendrick25
PRO
1
500
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
Deep Space Network (abreviated)
tonyrice
0
65
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
120
The Curse of the Amulet
leimatthew05
1
8.7k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
Transcript
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING
DISTANT SUPERVISION 長岡技術科学大学 自然言語処理研究室 上脇優人 Genta Indra Winata, Onno Pepijn Kampman, Pascale Fung Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong ICASSP 2018 6月文献紹介
Abstruct •自己導出型の書き起こしからの心理的ストレスを分類す るためのattentionメカニズムを備えたLSTMを提案. •コーパスのサイズを補完して拡張するハッシュタグの内 容に基づいて,ツイートを自動的にラベル付けすること によってdistant supervisionを適用. •biLSTMモデルは,accuracy 74.1%とF値 74.3%の
点で最高のモデルである. •distant supervisionの微調整により,accuracy 1.6%,F値 2.1%向上. 2
Introduction •心理的ストレスは,人の話し方や言葉の選択に影 響する. •言語学的研究では,言語選択にストレスと精神的 健康のレベルへの指針が含まれていることが示さ れている. •うつ病の発生を予測するためのソーシャルメディ アとTwitterからのテキストデータの可能性も実 証されている. •文章レベルのストレス検出に関する研究は,主に,
マイクロブログなどのソーシャルメディアから収 集されたテキストに焦点を当てている. 3
Introduction •本研究では,面接転写から文章レベルでの心理的ストレ スを検出するための単語埋め込み型attention based LSTMモデルを構築することを提案. •本ケースでは,著者の心の強調または非ストレス状態を 示すハッシュタグを手動で選択し,ストレス(正のラベ ル)とストレスのない(負のラベル)つぶやきをスクラ ップするのに使用. •インタビューコーパスは比較的小さく,主にアカデミア
に関連する限られた数の話題しかカバーしていないため, トレーニング中にデータを追加する必要がある. 4 この論文の主な貢献は、Twitterから収集されたラベルのないデータ が,本研究のインタビュー転記コーパスの分類パフォーマンスを向上 させることができることを示し,attention mechanismを適用すると モデルが重要な単語を効果的に選択するのに役立つ.
Models •本研究の目的は,入力として発話があれば,誰か がストレスを受けているかどうかを判断可能とす ることである. •いくつかの異なるモデルを探索した. •LSTM及びBiLSTMモデルでは,最終的にストレス 及びストレスのない用語集を形成するために訓練 可能な埋め込み層を使用した. •LSTMは,文中の単語の時間的ダイナミクスを捕 捉することが可能.
5
6
7
SVM •ベースラインとして,Radial Basis Function(RBF)カーネルを用いてSVMを構築 した. •与えられた文中の単語ごとにword2vecのワード エンベディングを抽出した. •埋め込みの次元数はkは300で,Googleニュース のデータで事前に訓練されている(約1000億語 でユニークワードは約300万語).
•SVMの場合,入力はN個の発話ベクトルからなる 入力行列として表されます. 8
9
10
11
12
Conclusion •面接記録から面接者のストレスレベルを分類する 方法を提示した. •biLSTMのモデルが最高性能であった. •ドメイン外ストレスツイートデータセットを使用 した2段階トレーニング方法は,学習のパフォー マンスを向上させる. 13
Future work •言語的および音響的特徴を用いたマルチモーダル 学習をする. •transfer learningのために文法的に正しい文 章を取得する. •今回のモデルを仮想セラピストのプラットフォー ムに組み込んで自動音声出力をさせる. •これにより、システムはユーザーのストレスを認
識し,適切なストレスマネジメントのアドバイス とエクササイズで対応する. 14