Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS D...
Search
Yuto Kamiwaki
June 27, 2018
Research
0
150
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
2018/06/28文献紹介の発表内容
Yuto Kamiwaki
June 27, 2018
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
yuto_kamiwaki
0
120
Modeling Naive Psychology of Characters in Simple Commonsense Stories
yuto_kamiwaki
1
220
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
yuto_kamiwaki
0
110
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
140
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
270
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
83
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
170
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
yuto_kamiwaki
0
110
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
yuto_kamiwaki
0
250
Other Decks in Research
See All in Research
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
320
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
810
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
100
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
6.3k
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
690
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
430
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
220
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
140
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
POI: Proof of Identity
katsyoshi
0
110
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
260
CVPR2025論文紹介:Unboxed
murakawatakuya
0
220
Featured
See All Featured
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Building Flexible Design Systems
yeseniaperezcruz
330
39k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Faster Mobile Websites
deanohume
310
31k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Context Engineering - Making Every Token Count
addyosmani
9
490
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Scaling GitHub
holman
464
140k
Raft: Consensus for Rubyists
vanstee
141
7.2k
Transcript
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING
DISTANT SUPERVISION 長岡技術科学大学 自然言語処理研究室 上脇優人 Genta Indra Winata, Onno Pepijn Kampman, Pascale Fung Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong ICASSP 2018 6月文献紹介
Abstruct •自己導出型の書き起こしからの心理的ストレスを分類す るためのattentionメカニズムを備えたLSTMを提案. •コーパスのサイズを補完して拡張するハッシュタグの内 容に基づいて,ツイートを自動的にラベル付けすること によってdistant supervisionを適用. •biLSTMモデルは,accuracy 74.1%とF値 74.3%の
点で最高のモデルである. •distant supervisionの微調整により,accuracy 1.6%,F値 2.1%向上. 2
Introduction •心理的ストレスは,人の話し方や言葉の選択に影 響する. •言語学的研究では,言語選択にストレスと精神的 健康のレベルへの指針が含まれていることが示さ れている. •うつ病の発生を予測するためのソーシャルメディ アとTwitterからのテキストデータの可能性も実 証されている. •文章レベルのストレス検出に関する研究は,主に,
マイクロブログなどのソーシャルメディアから収 集されたテキストに焦点を当てている. 3
Introduction •本研究では,面接転写から文章レベルでの心理的ストレ スを検出するための単語埋め込み型attention based LSTMモデルを構築することを提案. •本ケースでは,著者の心の強調または非ストレス状態を 示すハッシュタグを手動で選択し,ストレス(正のラベ ル)とストレスのない(負のラベル)つぶやきをスクラ ップするのに使用. •インタビューコーパスは比較的小さく,主にアカデミア
に関連する限られた数の話題しかカバーしていないため, トレーニング中にデータを追加する必要がある. 4 この論文の主な貢献は、Twitterから収集されたラベルのないデータ が,本研究のインタビュー転記コーパスの分類パフォーマンスを向上 させることができることを示し,attention mechanismを適用すると モデルが重要な単語を効果的に選択するのに役立つ.
Models •本研究の目的は,入力として発話があれば,誰か がストレスを受けているかどうかを判断可能とす ることである. •いくつかの異なるモデルを探索した. •LSTM及びBiLSTMモデルでは,最終的にストレス 及びストレスのない用語集を形成するために訓練 可能な埋め込み層を使用した. •LSTMは,文中の単語の時間的ダイナミクスを捕 捉することが可能.
5
6
7
SVM •ベースラインとして,Radial Basis Function(RBF)カーネルを用いてSVMを構築 した. •与えられた文中の単語ごとにword2vecのワード エンベディングを抽出した. •埋め込みの次元数はkは300で,Googleニュース のデータで事前に訓練されている(約1000億語 でユニークワードは約300万語).
•SVMの場合,入力はN個の発話ベクトルからなる 入力行列として表されます. 8
9
10
11
12
Conclusion •面接記録から面接者のストレスレベルを分類する 方法を提示した. •biLSTMのモデルが最高性能であった. •ドメイン外ストレスツイートデータセットを使用 した2段階トレーニング方法は,学習のパフォー マンスを向上させる. 13
Future work •言語的および音響的特徴を用いたマルチモーダル 学習をする. •transfer learningのために文法的に正しい文 章を取得する. •今回のモデルを仮想セラピストのプラットフォー ムに組み込んで自動音声出力をさせる. •これにより、システムはユーザーのストレスを認
識し,適切なストレスマネジメントのアドバイス とエクササイズで対応する. 14