Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Emo2Vec: Learning Generalized Emotion Represent...
Search
Yuto Kamiwaki
February 05, 2019
Research
0
120
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
2019/02/06 文献紹介の発表内容
Yuto Kamiwaki
February 05, 2019
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Modeling Naive Psychology of Characters in Simple Commonsense Stories
yuto_kamiwaki
1
210
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
yuto_kamiwaki
0
110
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
130
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
260
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
81
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
160
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
yuto_kamiwaki
0
110
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
yuto_kamiwaki
0
150
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
yuto_kamiwaki
0
250
Other Decks in Research
See All in Research
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
18k
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
10
4.2k
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
2.8k
近似動的計画入門
mickey_kubo
4
1k
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
300
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
130
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
240
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
140
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.9k
数理最適化に基づく制御
mickey_kubo
6
730
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
540
数理最適化と機械学習の融合
mickey_kubo
16
9.3k
Featured
See All Featured
Speed Design
sergeychernyshev
32
1.1k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Making Projects Easy
brettharned
117
6.4k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
520
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
Transcript
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training Nagaoka University
of Technology Yuto Kamiwaki Literature Review
Literature • Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
• Peng Xu, Andrea Madotto, Chien-Sheng Wu, Ji Ho Park and Pascale Fung • Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, 2018 2
3 • 気圧が変化すると頭が痛い. • あなたのことを考えると頭が痛い.
Introduction 4 通常のWord embeddingで捉えられる: • 発熱 • 頭痛 • 歯痛
通常のWord embeddingで捉えられない: • あなたのことを考えると頭が痛い. 意味の近さは,捉えられる.
• 感情的な意味をベクトル化するEmo2Vecを提案. • 既存の手法(SSWE,DeepMoji)よりも良い結果. • GloVeと組み合わせると単純なロジスティック回帰分類器で いくつかのタスクのSoTAに匹敵する. 5
6
7
8
9 データ規模 Train[%] validation[%] test[%] Twitterのデータ 190万文 70 15 15
learning rate : 0.001 L2 regularization : 1.0 batch size
: 32 ベースラインとしてSSWE,DeepMojiを使用. • SSWE 50次元のセンチメント固有のWord embedding 意味情報と感情情報の両方をベクトルに符号化することによって1000万ツイート を学習した埋め込みモデル • DeepMoji 12億のツイートの巨大なデータセットを使って入力文書の絵文字を予測するモデ ル.埋め込み層は,暗黙のうちに感情の知識で符号化されている. DeepMojiの256次元埋め込み層であるDeepMojiのWord embedingを使用. 10 最良のモデルを保存し, 埋め込み層をEmo2Vecの ベクトルとして使用.
11
12
Conclusion • マルチタスクトレーニングフレームワークを用いて感情をベク トルで表現するEmo2Vecを提案. • 10を超える異なるデータセットに対する既存の心理関連の Word embeddingよりも優れている. • Emo2VecとGloVeを組み合わせることで,ロジスティック回
帰はいくつかのSoTAと互角の性能. 13