Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Emo2Vec: Learning Generalized Emotion Represent...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yuto Kamiwaki
February 05, 2019
Research
0
120
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
2019/02/06 文献紹介の発表内容
Yuto Kamiwaki
February 05, 2019
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Modeling Naive Psychology of Characters in Simple Commonsense Stories
yuto_kamiwaki
1
220
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
yuto_kamiwaki
0
110
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
140
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
270
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
86
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
180
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
yuto_kamiwaki
0
110
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
yuto_kamiwaki
0
150
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
yuto_kamiwaki
0
250
Other Decks in Research
See All in Research
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
20k
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
890
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
280
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.3k
2025-11-21-DA-10th-satellite
yegusa
0
110
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
4
1.3k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
330
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
710
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
620
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
210
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
660
Featured
See All Featured
Embracing the Ebb and Flow
colly
88
5k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Are puppies a ranking factor?
jonoalderson
1
2.7k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
150
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Documentation Writing (for coders)
carmenintech
77
5.3k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
GitHub's CSS Performance
jonrohan
1032
470k
Speed Design
sergeychernyshev
33
1.5k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
Transcript
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training Nagaoka University
of Technology Yuto Kamiwaki Literature Review
Literature • Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
• Peng Xu, Andrea Madotto, Chien-Sheng Wu, Ji Ho Park and Pascale Fung • Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, 2018 2
3 • 気圧が変化すると頭が痛い. • あなたのことを考えると頭が痛い.
Introduction 4 通常のWord embeddingで捉えられる: • 発熱 • 頭痛 • 歯痛
通常のWord embeddingで捉えられない: • あなたのことを考えると頭が痛い. 意味の近さは,捉えられる.
• 感情的な意味をベクトル化するEmo2Vecを提案. • 既存の手法(SSWE,DeepMoji)よりも良い結果. • GloVeと組み合わせると単純なロジスティック回帰分類器で いくつかのタスクのSoTAに匹敵する. 5
6
7
8
9 データ規模 Train[%] validation[%] test[%] Twitterのデータ 190万文 70 15 15
learning rate : 0.001 L2 regularization : 1.0 batch size
: 32 ベースラインとしてSSWE,DeepMojiを使用. • SSWE 50次元のセンチメント固有のWord embedding 意味情報と感情情報の両方をベクトルに符号化することによって1000万ツイート を学習した埋め込みモデル • DeepMoji 12億のツイートの巨大なデータセットを使って入力文書の絵文字を予測するモデ ル.埋め込み層は,暗黙のうちに感情の知識で符号化されている. DeepMojiの256次元埋め込み層であるDeepMojiのWord embedingを使用. 10 最良のモデルを保存し, 埋め込み層をEmo2Vecの ベクトルとして使用.
11
12
Conclusion • マルチタスクトレーニングフレームワークを用いて感情をベク トルで表現するEmo2Vecを提案. • 10を超える異なるデータセットに対する既存の心理関連の Word embeddingよりも優れている. • Emo2VecとGloVeを組み合わせることで,ロジスティック回
帰はいくつかのSoTAと互角の性能. 13