Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
BB_twtr at SemEval-2017 Task 4: Twitter Sentime...
Search
Yuto Kamiwaki
May 29, 2018
Research
0
250
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
2018/05/30文献紹介の発表内容
Yuto Kamiwaki
May 29, 2018
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
yuto_kamiwaki
0
120
Modeling Naive Psychology of Characters in Simple Commonsense Stories
yuto_kamiwaki
1
220
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
yuto_kamiwaki
0
110
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
140
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
270
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
83
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
170
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
yuto_kamiwaki
0
110
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
yuto_kamiwaki
0
150
Other Decks in Research
See All in Research
投資戦略202508
pw
0
580
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
440
POI: Proof of Identity
katsyoshi
0
110
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
820
CoRL2025速報
rpc
2
3.5k
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
14
13k
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
480
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
160
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
320
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
970
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
260
湯村研究室の紹介2025 / yumulab2025
yumulab
0
220
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Context Engineering - Making Every Token Count
addyosmani
9
490
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Scaling GitHub
holman
464
140k
Transcript
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs
and LSTMs 長岡技術科学大学 自然言語処理研究室 上脇優人 Mathieu Cliche Bloomberg SemEval-2017 pp573-580 5月文献紹介 ※sentiment=感情としています
Abstract •内容は,SoTAを達成したTwitterの感情分類 器(CNNとLSTM)について. •最終的なCNNとLSTMは,再度fine tuneした SemEval-2017 Twitter datasetでトレー ニングした. •パフォーマンスを向上させるためにいくつかの
CNNとLSTMを一緒に使う. •この手法は,40のチームの中で5つの英語のサ ブタスクで1位であった. 2
Introduction •Tweetの極性を決定するタスクは,タスクの 理解がしやすく,簡単な方法で良い結果を得る ことが可能. •SemEval-2017のコンペは,5つのサブタス ク. • (タスクの種類については,Rosenthal et al.,2017を参照)
•深層学習の手法は,いくつかのNLPタスクで従 来の手法を大幅に凌駕していて感情分析も例外 でない. •感情分析においても有用な深層学習のCNNと LSTMを用いて(組み合わせたりして)感情分 類器を構築する. 3
CNN 4 Input: 単語にトークン化されたTweet 全体のツイートが ツイート内の単語の数×200の マトリクスにマッピングされる.
LSTM 5
Training •subtask A: • 49693 human labeled tweets •subtask C
and E: • 30849 human labeled tweets •subtask B and D: • 18948 human labeled tweets •上記のデータの他に1億の英語のツイートを取 得し,500万のポジティブツイートと500万の ネガティブツイートのデータ抽出. ※:)等はポジティブになっている 6
Unsupervised training •取得した1億のラベルなしデータを使用. •学習に使用したモデルは,下記3種類のアルゴ リズム. • Word2vec • FastText •
GloVe •全てのアルゴリズムにおいて論文著者が提供す るコードをデフォルトで使用. 7
Distant training •極性情報を追加するためにDistant training. •Distant trainingには、CNNを使用し,初 期値は教師なしフェーズで学習した embeddingを使用. •次に,抽出した500万のポジティブツイートと 500万のネガティブツイートのデータを用いて
CNNをtrainingしてノイズを分類. 8
Supervised training •このtrainingでは,SemEval-2017から提 供されるhuman labeled tweetsを使用す る. •CNNとLSTMのembeddingの初期値は,前のフ ェーズでfine tuneされた
embedding.(epoch:1~5) •モデルはTensorFlowで実装され、実験は GeForce GTX Titan X GPUで実行. •分散を軽減し、精度を向上させるために、10 のCNNと10のLSTMを統合. 9
Result 10
Result 11
Conclusion •SemEval-2017 Twitter sentiment analysis competitionのpaper. •Tweetの分類器を現代のtraining法に加えて 深層学習のモデルで実験した. •最後のモデルは,10のCNNと10のLSTMを用い た.(異なるハイパーパラメータ・トレーニン
グ). •参加したタスク全てで1位だった. 12
Future work •CNNとLSTMを組み合わせたモデルの探求 •unlabeled dataとdistant dataの量によ るモデルのパフォーマンスの変化の調査 13