Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
BB_twtr at SemEval-2017 Task 4: Twitter Sentime...
Search
Yuto Kamiwaki
May 29, 2018
Research
0
250
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
2018/05/30文献紹介の発表内容
Yuto Kamiwaki
May 29, 2018
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
yuto_kamiwaki
0
120
Modeling Naive Psychology of Characters in Simple Commonsense Stories
yuto_kamiwaki
1
220
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
yuto_kamiwaki
0
110
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
140
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
270
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
83
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
170
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
yuto_kamiwaki
0
110
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
yuto_kamiwaki
0
150
Other Decks in Research
See All in Research
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
300
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
470
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
930
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
470
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
310
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
160
CoRL2025速報
rpc
4
3.8k
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
110
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
230
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
150
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
187
22k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Paper Plane
katiecoart
PRO
0
45k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
93
Product Roadmaps are Hard
iamctodd
PRO
55
12k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
WCS-LA-2024
lcolladotor
0
400
Darren the Foodie - Storyboard
khoart
PRO
0
2.1k
Transcript
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs
and LSTMs 長岡技術科学大学 自然言語処理研究室 上脇優人 Mathieu Cliche Bloomberg SemEval-2017 pp573-580 5月文献紹介 ※sentiment=感情としています
Abstract •内容は,SoTAを達成したTwitterの感情分類 器(CNNとLSTM)について. •最終的なCNNとLSTMは,再度fine tuneした SemEval-2017 Twitter datasetでトレー ニングした. •パフォーマンスを向上させるためにいくつかの
CNNとLSTMを一緒に使う. •この手法は,40のチームの中で5つの英語のサ ブタスクで1位であった. 2
Introduction •Tweetの極性を決定するタスクは,タスクの 理解がしやすく,簡単な方法で良い結果を得る ことが可能. •SemEval-2017のコンペは,5つのサブタス ク. • (タスクの種類については,Rosenthal et al.,2017を参照)
•深層学習の手法は,いくつかのNLPタスクで従 来の手法を大幅に凌駕していて感情分析も例外 でない. •感情分析においても有用な深層学習のCNNと LSTMを用いて(組み合わせたりして)感情分 類器を構築する. 3
CNN 4 Input: 単語にトークン化されたTweet 全体のツイートが ツイート内の単語の数×200の マトリクスにマッピングされる.
LSTM 5
Training •subtask A: • 49693 human labeled tweets •subtask C
and E: • 30849 human labeled tweets •subtask B and D: • 18948 human labeled tweets •上記のデータの他に1億の英語のツイートを取 得し,500万のポジティブツイートと500万の ネガティブツイートのデータ抽出. ※:)等はポジティブになっている 6
Unsupervised training •取得した1億のラベルなしデータを使用. •学習に使用したモデルは,下記3種類のアルゴ リズム. • Word2vec • FastText •
GloVe •全てのアルゴリズムにおいて論文著者が提供す るコードをデフォルトで使用. 7
Distant training •極性情報を追加するためにDistant training. •Distant trainingには、CNNを使用し,初 期値は教師なしフェーズで学習した embeddingを使用. •次に,抽出した500万のポジティブツイートと 500万のネガティブツイートのデータを用いて
CNNをtrainingしてノイズを分類. 8
Supervised training •このtrainingでは,SemEval-2017から提 供されるhuman labeled tweetsを使用す る. •CNNとLSTMのembeddingの初期値は,前のフ ェーズでfine tuneされた
embedding.(epoch:1~5) •モデルはTensorFlowで実装され、実験は GeForce GTX Titan X GPUで実行. •分散を軽減し、精度を向上させるために、10 のCNNと10のLSTMを統合. 9
Result 10
Result 11
Conclusion •SemEval-2017 Twitter sentiment analysis competitionのpaper. •Tweetの分類器を現代のtraining法に加えて 深層学習のモデルで実験した. •最後のモデルは,10のCNNと10のLSTMを用い た.(異なるハイパーパラメータ・トレーニン
グ). •参加したタスク全てで1位だった. 12
Future work •CNNとLSTMを組み合わせたモデルの探求 •unlabeled dataとdistant dataの量によ るモデルのパフォーマンスの変化の調査 13