Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
BB_twtr at SemEval-2017 Task 4: Twitter Sentime...
Search
Yuto Kamiwaki
May 29, 2018
Research
0
250
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
2018/05/30文献紹介の発表内容
Yuto Kamiwaki
May 29, 2018
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
yuto_kamiwaki
0
120
Modeling Naive Psychology of Characters in Simple Commonsense Stories
yuto_kamiwaki
1
210
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
yuto_kamiwaki
0
110
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
130
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
260
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
82
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
160
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
yuto_kamiwaki
0
110
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
yuto_kamiwaki
0
150
Other Decks in Research
See All in Research
音声感情認識技術の進展と展望
nagase
0
220
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
6
1.7k
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
350
Generative Models 2025
takahashihiroshi
25
13k
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
380
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
610
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
440
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
130
ip71_contraflow_reconfiguration
stkmsd
0
110
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
240
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
140
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
660
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
YesSQL, Process and Tooling at Scale
rocio
173
14k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Designing Experiences People Love
moore
142
24k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
850
Measuring & Analyzing Core Web Vitals
bluesmoon
9
620
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Transcript
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs
and LSTMs 長岡技術科学大学 自然言語処理研究室 上脇優人 Mathieu Cliche Bloomberg SemEval-2017 pp573-580 5月文献紹介 ※sentiment=感情としています
Abstract •内容は,SoTAを達成したTwitterの感情分類 器(CNNとLSTM)について. •最終的なCNNとLSTMは,再度fine tuneした SemEval-2017 Twitter datasetでトレー ニングした. •パフォーマンスを向上させるためにいくつかの
CNNとLSTMを一緒に使う. •この手法は,40のチームの中で5つの英語のサ ブタスクで1位であった. 2
Introduction •Tweetの極性を決定するタスクは,タスクの 理解がしやすく,簡単な方法で良い結果を得る ことが可能. •SemEval-2017のコンペは,5つのサブタス ク. • (タスクの種類については,Rosenthal et al.,2017を参照)
•深層学習の手法は,いくつかのNLPタスクで従 来の手法を大幅に凌駕していて感情分析も例外 でない. •感情分析においても有用な深層学習のCNNと LSTMを用いて(組み合わせたりして)感情分 類器を構築する. 3
CNN 4 Input: 単語にトークン化されたTweet 全体のツイートが ツイート内の単語の数×200の マトリクスにマッピングされる.
LSTM 5
Training •subtask A: • 49693 human labeled tweets •subtask C
and E: • 30849 human labeled tweets •subtask B and D: • 18948 human labeled tweets •上記のデータの他に1億の英語のツイートを取 得し,500万のポジティブツイートと500万の ネガティブツイートのデータ抽出. ※:)等はポジティブになっている 6
Unsupervised training •取得した1億のラベルなしデータを使用. •学習に使用したモデルは,下記3種類のアルゴ リズム. • Word2vec • FastText •
GloVe •全てのアルゴリズムにおいて論文著者が提供す るコードをデフォルトで使用. 7
Distant training •極性情報を追加するためにDistant training. •Distant trainingには、CNNを使用し,初 期値は教師なしフェーズで学習した embeddingを使用. •次に,抽出した500万のポジティブツイートと 500万のネガティブツイートのデータを用いて
CNNをtrainingしてノイズを分類. 8
Supervised training •このtrainingでは,SemEval-2017から提 供されるhuman labeled tweetsを使用す る. •CNNとLSTMのembeddingの初期値は,前のフ ェーズでfine tuneされた
embedding.(epoch:1~5) •モデルはTensorFlowで実装され、実験は GeForce GTX Titan X GPUで実行. •分散を軽減し、精度を向上させるために、10 のCNNと10のLSTMを統合. 9
Result 10
Result 11
Conclusion •SemEval-2017 Twitter sentiment analysis competitionのpaper. •Tweetの分類器を現代のtraining法に加えて 深層学習のモデルで実験した. •最後のモデルは,10のCNNと10のLSTMを用い た.(異なるハイパーパラメータ・トレーニン
グ). •参加したタスク全てで1位だった. 12
Future work •CNNとLSTMを組み合わせたモデルの探求 •unlabeled dataとdistant dataの量によ るモデルのパフォーマンスの変化の調査 13