$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
EmoWordNet: Automatic Expansion of Emotion Lexi...
Search
Yuto Kamiwaki
July 25, 2018
Research
0
110
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
2018/07/26文献紹介の発表内容
Yuto Kamiwaki
July 25, 2018
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
yuto_kamiwaki
0
120
Modeling Naive Psychology of Characters in Simple Commonsense Stories
yuto_kamiwaki
1
220
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
yuto_kamiwaki
0
110
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
140
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
270
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
83
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
170
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
yuto_kamiwaki
0
150
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
yuto_kamiwaki
0
250
Other Decks in Research
See All in Research
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
520
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
110
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
490
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
430
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
140
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
430
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
140
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
3
690
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
390
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
5k
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1k
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
810
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Facilitating Awesome Meetings
lara
57
6.7k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Designing Experiences People Love
moore
143
24k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
KATA
mclloyd
PRO
32
15k
How GitHub (no longer) Works
holman
316
140k
Designing for Performance
lara
610
69k
Transcript
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet 長岡技術科学大学
自然言語処理研究室 上脇優人 Gilbert Badaro,Hussein Jundi,Harzem Hajj, Wassim El-Hajj Lexical and Computational Semantics(*SEM), 2018,pp86-93 7月文献紹介
Abstract •過去10年間,テキストから感情極性を抽出する ために多くの研究がされている. •最近は,テキストから感情認識もできるように なって来ている. •英語のWordNetを活用して,既存の感情辞書 DepecheMoodを拡張し,EmoWordNet(以下, EWN)を構築するといった内容. •語数は,67000語.(DepecheMoodの約1.8倍) 2
Introduction •SNSのユーザーが増えたことによって,大量の 意見・感情の含まれたテキストが使えるように なった. •感情辞書は,感情分類モデルの精度向上に寄与 している. •感情は,通常,「ポジティブ・ネガティブ・ニ ュートラル」の3つのラベルで表される. • Ekmanの感情分類(Ekman
1992)(幸福・悲しみ・ 恐怖・怒り・驚き・嫌悪感)やPlutchikのモデルに は,Ekmanの感情分類に加えて,信頼と期待が含ま れている. 3
Introduction •英語で大規模な感情辞書を作成する研究は多く あったが,既存の感情辞書のサイズは,小さい ままである. •Example: • 英語最大の感情辞書:DepecheMood • (Staiano and
Guerini 2014),約37000語 • SentiWordNet(SWN) • (Esuli and Sebastiani 2007;Baccianella et al 2010) • EWN(Fellbaum 1998)を使用して半自動的に生成された 英文の語彙レキシコンには「Positive・Negative・ Objective」の3つの感情が付与された約150000語が含ま れている. 4
Introduction •本研究は,EWNで利用可能なシソーラスを用い て,既存の感情辞書であるDepecheMoodの適 用範囲を拡大することに焦点を当てる. •DepecheMoodは,公開されている最大の感情 辞書の1つであり,その用語はEWNと整合してい る. •従って,DepecheMoodを拡張する. 5
Approach •DepecheMoodは,それぞれのエントリに8つの 感情ラベル(afraid・amused・angry・ annoyed・don’t care・happy・inspired ・sad)のスコア,POSタグと共に37771の見出 しから構成されている. •DepecheMoodには,スコア表現の3つのバリエ ーションが存在する. •
今回は,正規化スコアを用いたバリエーションを選 択. 6
7
Dataset & Coverage •SemEval 2007 task on Affective text(Strapparava and
Mihalcea, 2007) •データセットは,「anger,disgust,fear, joy,sadness,surprise」の6つの感情が 付与された1000の新しい見出しで構成されてい る. •(Staiano and Guerini,2014)の感情マッ ピングを考慮. • Fear → Afraid,Anger → Angry,Joy → Happy, Sadness → Sad,Surprise → Inspired. 8
Dataset & Coverage •カバレッジを計算するために,Python NLTKパッケ ージで入手可能なWordNet lemmatizerを使ってニ ュースheadlinesの見出し語化を行った. •名詞,動詞,形容詞,副詞とは異なるPOSタグを含む すべての単語を除外した.
•EmoWordNetは68.6%のカバレッジを達成し, DepecheMoodは67.1%のカバレッジを達成した. •カバレッジの増加が予想されたが,データセットのサ イズが比較的小さいため,増加は約1.5%に過ぎなか った。 9
Regression and Classification Results •DepecheMoodを評価するために提示されたアプロー チと同様のアプローチに従った. •前処理として,最初にPython NLTKパッケージで利 用可能なWordNet lemmatizerを使ってheadline
の見出し語化をした. •見出し語化後にnグラム(n = 3まで)を調べることで, EmoWordNetで利用可能な複数単語の語句を取得し た. •次に,名詞,動詞,形容詞,副詞の4つのPOSタグの いずれにも属していない用語をすべて削除した. 10
Regression and Classification Results •特徴量計算では,EmoWordNetとSemEvalデー タセットで重なる5つの感情ラベルの感情スコ アの合計と平均の2つのバリエーションを検討 した. •平均のスコアを用いるほうが,両方のデータの 合計スコアを使用するよりも優れたパフォーマ
ンスを発揮することが分かった. 11
12
13
14
15
Conclusion and Future Work • EmoWordNet(大規模な感情辞書)を製作した.EmoWordNetは,約 67000のEWNの単語と58000のEWN synsetと8つの感情スコアで 構成されている. •
EmoWordNetは,EWNとDepecheMoodを使用した意味拡張アプロ ーチを適用することによって自動的に構築した. • EmoWordNetは,既存の感情辞書より優れており,より優れた語彙 カバレッジを持っている. • 将来的には,より大きなデータセットでEmoWordNetのパフォーマ ンスを評価し,認識モデルの精度を向上させたい. • EmoWordNetはhttp://oma-project.comに公開されている. 16