Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
EmoWordNet: Automatic Expansion of Emotion Lexi...
Search
Yuto Kamiwaki
July 25, 2018
Research
0
110
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet
2018/07/26文献紹介の発表内容
Yuto Kamiwaki
July 25, 2018
Tweet
Share
More Decks by Yuto Kamiwaki
See All by Yuto Kamiwaki
Emo2Vec: Learning Generalized Emotion Representation by Multi-task Training
yuto_kamiwaki
0
110
Modeling Naive Psychology of Characters in Simple Commonsense Stories
yuto_kamiwaki
1
210
Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm
yuto_kamiwaki
0
110
Epita at SemEval-2018 Task 1: Sentiment Analysis Using Transfer Learning Approach
yuto_kamiwaki
0
130
Tensor Fusion Network for Multimodal Sentiment Analysis
yuto_kamiwaki
0
250
Sentiment Analysis: It’s Complicated!
yuto_kamiwaki
0
79
ADAPT at IJCNLP-2017 Task 4: A Multinomial Naive Bayes Classification Approach for Customer Feedback Analysis task
yuto_kamiwaki
0
150
ATTENTION-BASED LSTM FOR PSYCHOLOGICAL STRESS DETECTION FROM SPOKEN LANGUAGE USING DISTANT SUPERVISION
yuto_kamiwaki
0
150
BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs
yuto_kamiwaki
0
250
Other Decks in Research
See All in Research
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
310
プロシェアリング白書2025_PROSHARING_REPORT_2025
circulation
1
890
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
660
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
310
データサイエンティストの就労意識~2015→2024 一般(個人)会員アンケートより
datascientistsociety
PRO
0
710
NLP Colloquium
junokim
1
160
業界横断 副業・兼業者の実態調査
fkske
0
190
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
130
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
120
EarthSynth: Generating Informative Earth Observation with Diffusion Models
satai
3
110
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
110
最適化と機械学習による問題解決
mickey_kubo
0
140
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
740
Producing Creativity
orderedlist
PRO
346
40k
Statistics for Hackers
jakevdp
799
220k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
The World Runs on Bad Software
bkeepers
PRO
69
11k
The Pragmatic Product Professional
lauravandoore
35
6.7k
RailsConf 2023
tenderlove
30
1.1k
Code Review Best Practice
trishagee
69
18k
A designer walks into a library…
pauljervisheath
207
24k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
820
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
690
4 Signs Your Business is Dying
shpigford
184
22k
Transcript
EmoWordNet: Automatic Expansion of Emotion Lexicon Using English WordNet 長岡技術科学大学
自然言語処理研究室 上脇優人 Gilbert Badaro,Hussein Jundi,Harzem Hajj, Wassim El-Hajj Lexical and Computational Semantics(*SEM), 2018,pp86-93 7月文献紹介
Abstract •過去10年間,テキストから感情極性を抽出する ために多くの研究がされている. •最近は,テキストから感情認識もできるように なって来ている. •英語のWordNetを活用して,既存の感情辞書 DepecheMoodを拡張し,EmoWordNet(以下, EWN)を構築するといった内容. •語数は,67000語.(DepecheMoodの約1.8倍) 2
Introduction •SNSのユーザーが増えたことによって,大量の 意見・感情の含まれたテキストが使えるように なった. •感情辞書は,感情分類モデルの精度向上に寄与 している. •感情は,通常,「ポジティブ・ネガティブ・ニ ュートラル」の3つのラベルで表される. • Ekmanの感情分類(Ekman
1992)(幸福・悲しみ・ 恐怖・怒り・驚き・嫌悪感)やPlutchikのモデルに は,Ekmanの感情分類に加えて,信頼と期待が含ま れている. 3
Introduction •英語で大規模な感情辞書を作成する研究は多く あったが,既存の感情辞書のサイズは,小さい ままである. •Example: • 英語最大の感情辞書:DepecheMood • (Staiano and
Guerini 2014),約37000語 • SentiWordNet(SWN) • (Esuli and Sebastiani 2007;Baccianella et al 2010) • EWN(Fellbaum 1998)を使用して半自動的に生成された 英文の語彙レキシコンには「Positive・Negative・ Objective」の3つの感情が付与された約150000語が含ま れている. 4
Introduction •本研究は,EWNで利用可能なシソーラスを用い て,既存の感情辞書であるDepecheMoodの適 用範囲を拡大することに焦点を当てる. •DepecheMoodは,公開されている最大の感情 辞書の1つであり,その用語はEWNと整合してい る. •従って,DepecheMoodを拡張する. 5
Approach •DepecheMoodは,それぞれのエントリに8つの 感情ラベル(afraid・amused・angry・ annoyed・don’t care・happy・inspired ・sad)のスコア,POSタグと共に37771の見出 しから構成されている. •DepecheMoodには,スコア表現の3つのバリエ ーションが存在する. •
今回は,正規化スコアを用いたバリエーションを選 択. 6
7
Dataset & Coverage •SemEval 2007 task on Affective text(Strapparava and
Mihalcea, 2007) •データセットは,「anger,disgust,fear, joy,sadness,surprise」の6つの感情が 付与された1000の新しい見出しで構成されてい る. •(Staiano and Guerini,2014)の感情マッ ピングを考慮. • Fear → Afraid,Anger → Angry,Joy → Happy, Sadness → Sad,Surprise → Inspired. 8
Dataset & Coverage •カバレッジを計算するために,Python NLTKパッケ ージで入手可能なWordNet lemmatizerを使ってニ ュースheadlinesの見出し語化を行った. •名詞,動詞,形容詞,副詞とは異なるPOSタグを含む すべての単語を除外した.
•EmoWordNetは68.6%のカバレッジを達成し, DepecheMoodは67.1%のカバレッジを達成した. •カバレッジの増加が予想されたが,データセットのサ イズが比較的小さいため,増加は約1.5%に過ぎなか った。 9
Regression and Classification Results •DepecheMoodを評価するために提示されたアプロー チと同様のアプローチに従った. •前処理として,最初にPython NLTKパッケージで利 用可能なWordNet lemmatizerを使ってheadline
の見出し語化をした. •見出し語化後にnグラム(n = 3まで)を調べることで, EmoWordNetで利用可能な複数単語の語句を取得し た. •次に,名詞,動詞,形容詞,副詞の4つのPOSタグの いずれにも属していない用語をすべて削除した. 10
Regression and Classification Results •特徴量計算では,EmoWordNetとSemEvalデー タセットで重なる5つの感情ラベルの感情スコ アの合計と平均の2つのバリエーションを検討 した. •平均のスコアを用いるほうが,両方のデータの 合計スコアを使用するよりも優れたパフォーマ
ンスを発揮することが分かった. 11
12
13
14
15
Conclusion and Future Work • EmoWordNet(大規模な感情辞書)を製作した.EmoWordNetは,約 67000のEWNの単語と58000のEWN synsetと8つの感情スコアで 構成されている. •
EmoWordNetは,EWNとDepecheMoodを使用した意味拡張アプロ ーチを適用することによって自動的に構築した. • EmoWordNetは,既存の感情辞書より優れており,より優れた語彙 カバレッジを持っている. • 将来的には,より大きなデータセットでEmoWordNetのパフォーマ ンスを評価し,認識モデルの精度を向上させたい. • EmoWordNetはhttp://oma-project.comに公開されている. 16