Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
実務で使える異常検知 SOTA 手法 PatchCore
Search
Henry Cui
August 27, 2022
Programming
0
1.7k
実務で使える異常検知 SOTA 手法 PatchCore
Henry Cui
August 27, 2022
Tweet
Share
More Decks by Henry Cui
See All by Henry Cui
プロダクション言語モデルの情報を盗む攻撃 / Stealing Part of a Production Language Model
zchenry
0
86
Direct Preference Optimization
zchenry
0
280
Diffusion Model with Perceptual Loss
zchenry
0
240
レンズの下のLLM / LLM under the Lens
zchenry
0
150
Go with the Prompt Flow
zchenry
0
140
Mojo Dojo
zchenry
1
180
ことのはの力で画像の異常検知 / Anomaly Detection by Language
zchenry
0
380
驚愕の事実!LangChainが抱える問題 / Problems of LangChain
zchenry
0
170
MLOps初心者がMLflowを触る / MLflow Brief Introduction
zchenry
0
85
Other Decks in Programming
See All in Programming
EventSourcingの理想と現実
wenas
6
2.3k
Contemporary Test Cases
maaretp
0
140
「今のプロジェクトいろいろ大変なんですよ、app/services とかもあって……」/After Kaigi on Rails 2024 LT Night
junk0612
5
2.1k
CSC509 Lecture 09
javiergs
PRO
0
140
PHP でアセンブリ言語のように書く技術
memory1994
PRO
1
170
Outline View in SwiftUI
1024jp
1
330
色々なIaCツールを実際に触って比較してみる
iriikeita
0
330
Macとオーディオ再生 2024/11/02
yusukeito
0
370
광고 소재 심사 과정에 AI를 도입하여 광고 서비스 생산성 향상시키기
kakao
PRO
0
170
ピラミッド、アイスクリームコーン、SMURF: 自動テストの最適バランスを求めて / Pyramid Ice-Cream-Cone and SMURF
twada
PRO
10
1.3k
NSOutlineView何もわからん:( 前編 / I Don't Understand About NSOutlineView :( Pt. 1
usagimaru
0
330
What’s New in Compose Multiplatform - A Live Tour (droidcon London 2024)
zsmb
1
470
Featured
See All Featured
Ruby is Unlike a Banana
tanoku
97
11k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
A Philosophy of Restraint
colly
203
16k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
How to Ace a Technical Interview
jacobian
276
23k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
A Tale of Four Properties
chriscoyier
156
23k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
109
49k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Embracing the Ebb and Flow
colly
84
4.5k
Transcript
実務で使える異常検知 SOTA 手法 PatchCore 機械学習の社会実装勉強会第14回 Henry 2022/8/27
自己紹介 ▪ 東京大学理学部情報科学科 ▪ 同大学大学院情報理工学系研究科コンピュター科学専攻 ▪ 博士(情報理工学)取得 • ICMLなどの国際・国内学会・ジャーナルに論文発表 •
学振DC2 • AIPチャレンジなどの競争的研究費取得 • 中国の東北大学などを訪問 ▪ 在学中に大学発ベンチャーを共同創業し、CTOを務める 2
内容 ▪ 画像異常検知 ▪ PatchCore ▪ デモ 3
画像異常検知 ▪ 想定シーン • 自動車部品工場・サラダ工場など ▪ 問題設定 • 正常データはたくさんある ▪
正常部品が手元にある ▪ ある程度集められる • 異常データはほぼない ▪ すべての異常パターンを網羅的に用意することが難しい ▪ そもそも異常パターンがまれ ▪ AIにやってほしいこと • 正常データだけでモデル構築して、運用時に異常検知できる • 「Unsupervised Anomaly Detection」とも呼ぶ 4
最近のアプローチ ImageNetで学習されたモデルを活用 ▪ ImageNetは巨大なデータセットで、それを学習したモデルは だいたいのドメインの特徴量を取り出せる、と仮定 ▪ 上記モデルと使って、画像の特徴量が簡単に出せる ▪ 特徴量間の距離を上手く使えば、学習なしで異常検知でき ちゃう?
▪ はい、実際高精度でできてしまう 5
内容 ▪ 画像異常検知 ▪ PatchCore ▪ デモ 6
PatchCoreとは ▪ Towards Total Recall in Industrial Anomaly Detection, CVPR
2022 ▪ 工業異常検知用データセット MVTec AD において現状SOTA • https://paperswithcode.com/sota/anomaly-detection-on-mvtec-ad 7
PatchCoreの中身 8
PatchCoreの中身 以下の3つの部分からなっている ▪ 特徴量作成 • 手元にある正常画像に関する特徴量を作成 ▪ 特徴量サンプリング • 上記ステップで作成される特徴量が膨大
• 保存・距離測定時の探索のコストがかかるので、少なめにする ▪ 距離測定 • 運用時に新しい画像が来るときに、正常の特徴量との距離を持って異 常の度合いを決める 9
(1/3) 特徴量作成 ▪ 先行研究PaDiMの図示と大まかに同じことをやっている ▪ ある座標 (i, j) に対して •
周り window size p の特徴量を adaptive average pooling • 中間の2つの層だけを取り出す ▪ 上記PaDiMの図では3つを示してる ▪ 後ろよりすぎだと、特徴量がImageNet分類に特化しすぎ問題 • 短い方を bilinearly rescale して長さ揃って concat する 10
(2/3) 特徴量サンプリング ▪ ここで使う Coreset はもともと独立に研究された分野で、色ん な手法が確立された ▪ 最近は、機械学習に影響しつつあり、回帰や能動学習などに 使われ始めている
▪ ある目的の達成が維持されるような部分集合を探す • k-NN、回帰を行うときに見つかる関数が変わらない ▪ 今回は最大カバレージを求める 11
(2/3) 特徴量サンプリング ▪ Toy データでの Coreset VS Random Sampling 効果
12
(3/3) 距離測定 ▪ 新しい画像に対する異常スコア s を coreset 内要素との最短 距離で計算 ▪
s は s* を coreset 内要素の分布を考慮してスケールした値に なる 13
実験結果(すごく良かったよ、何ならSOTA) 14 他にも ablation study 色々...
内容 ▪ 画像異常検知 ▪ PatchCore ▪ デモ • 公式実装 https://github.com/amazon-research/patchcore-inspection
15