Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AI 活用を阻むデータ基盤とは。CData Sync で始めるデータ活用
Search
CData Software Japan
October 24, 2025
Business
0
15
AI 活用を阻むデータ基盤とは。CData Sync で始めるデータ活用
本日は『AI活用を阻むデータ基盤とは』というテーマで、CData Syncがいかにして皆様のデータ活用、特にAI活用を強力にサポートできるのか、その理由をお話しします。
CData Software Japan
October 24, 2025
Tweet
Share
More Decks by CData Software Japan
See All by CData Software Japan
Claude とMCP を使って Google Search Console のデータを分析・ダッシュボード開発・ウェブサイト改善
cdataj
1
64
CData Sync V25.3 アップデートをプロダクトスペシャリストが大解説 Open Table Format (Delta Lake)、Db2 for i CDC 機能など~
cdataj
0
8
BI ツールはもういらない?Amazon RedShift & MCP Server で試みる新しいデータ分析アプローチ
cdataj
0
320
NetSuite MCP Server とAI エージェントで未入金処理のオペレーション最適化を実現
cdataj
0
170
kintone とRemote MCP Server で実現する次世代BI? “AI Agent”による営業活動の圧倒的効率化
cdataj
1
190
レガシーDWH からSnowflake へのモダナイゼーション・データパイプライン刷新ポイント
cdataj
0
26
CData Sync V25.2 アップデートをプロダクトスペシャリストが大解説 Microsoft Fabric 連携やSAP ERP CDC 機能など~
cdataj
0
29
電気自動車 Tesla の公式API をPostman から実行し、車両データを取得・分析してみよう!
cdataj
0
21
NetSuite MCP ServerとAIエージェントで未入金処理のオペレーション最適化を実現
cdataj
0
88
Other Decks in Business
See All in Business
仕事と家庭は繋がっている 〜「おうち経営学」のススメ 〜
kosuket
0
300
TechnoKuRo LLC.
technokuro
0
620
malna-recruiting-pitch
malna
0
11k
Rakus Career Introduction
rakus_career
0
420k
日本マーケティング学会2025発表_組織の市場志向形成におけるバウンダリースパナー行動とマーケターの越境的役割
nazoru
PRO
0
490
【27新卒フィールドセールス職採用】BuySell Technologies会社紹介資料
buyselltechnologies
0
250k
Gemini と NotebookLM を組み合わせて 目標設定の負荷を軽減する方法 / Goal setting with gemini and notebooklm
tbpgr
21
42k
Mercari-Fact-book_en
mercari_inc
2
29k
ITで設備を制御する
tmizushima
1
520
キャッチアップ会社紹介
catchup
2
58k
明和不動産会社概要
prkoho
0
1.4k
ARI会社説明
arisaiyou
1
19k
Featured
See All Featured
Gamification - CAS2011
davidbonilla
81
5.5k
BBQ
matthewcrist
89
9.9k
Typedesign – Prime Four
hannesfritz
42
2.9k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Producing Creativity
orderedlist
PRO
348
40k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
How to Ace a Technical Interview
jacobian
280
24k
Facilitating Awesome Meetings
lara
57
6.6k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Transcript
CData Sync で始めるデータ活用 AI 活用を阻むデータ基盤とは 第1部
第1部では、AI 活用を阻む要因の解消をテーマに、 CData Sync がどのような製品なのかのご紹介と、製品の魅力についてお話いたします • 会社概要 • 自己紹介 •
なぜAI 活用は「データ準備」でつまずくのか? • CData Sync V25.3 が「AI活用の壁」をどう乗り越えるか • CData Sync の導入事例 • デモ実演|3STEP で簡単に接続できるCData Sync アジェンダ
会社紹介 CData ってどんな会社? I
CData Software US(NC州), オフィス:日本 / 欧州 / インド / 中国
本社 データアクセスおよびデータ接続ソリューションの リーディングプロバイダー 日本 法人 CData Software Japan 合同会社 宮城県仙台市 設立:2016/06 〜 400+ 10,000+ 180+ EMPLOYEES ACTIVE CUSTOMERS OEM PARTNERS
製品ポートフォリオ CData 製品は様々なデータソースからのデータを集め、分析しやすい形に統合するソリューションを提供しています データ仮想化 データレプリケーション オートメーション API 開発・公開 データコネクタ API
Server
CData Sync の担当フェーズ CData Sync はデータ活用フェーズ(一例)のうち、データ収集・蓄積・加工のELT 部分を担う製品です。
業界アナリストの評価 Gartner® Magic Quadrant for Data Integration Tools 2024 |https://www.cdata.com/jp/lp/gartner-magic-quadrant-2024/
業界アナリストの評価 Strong Performer in The Forrester Wave : Cloud Data
Pipelines, Q4 2023|https://www.cdata.com/resources/forrester-wave-cloud-data-pipelines-2023/
自己紹介 登壇者のプロフィール II
今西 涼 パートナーサクセスエンジニア - 2024年9月にCData Software Japan へジョイン - 前職はデータエンジニアとして、
1,500名の営業が利用するTableauダッシュボードの構築などを担当 ・営業資料の作成時間を75%カット ・2営業日かかっていた応募者情報を5分へ短縮 - 趣味はカメラとおかしづくり 自己紹介 CData 製品を活用したビジネス展開をご
なぜAI 活用は 「データ準備」で躓くのか? AI 活用を阻む 要因とはなんなのか? III
2015年から2020年にかけて、1企業が利用するSaaSアプリの数の推移を棒グラフにしたもの 2020年には何件になったと思いますか? なぜデータのサイロ化がおこるのか 2015 2016 2017 2020 8 12 16
?
2015年から2020年にかけて、企業が利用するSaaSアプリの数は 10倍にも増加 名刺管理、SFA、MA、会計、人事労務、経費精算、etc...あらゆる業務領域をカバーする特化型SaaS が普及 SaaS の乱立により、新たなデータサイロを生み出し、部門最適は実現できても、全社最適なデータ活用が困難に なぜデータのサイロ化がおこるのか 2015 2016 2017
2020 8 12 16 80
AI活用を阻む「3つのデータ基盤の壁」 人間が読みづらいデータは、AI 側もまた読みづらい 01 ・部門ごとに分断されたデータサイロ ・現状と乖離した鮮度の低い情報 ・ AIによる不正確なアウトプット データのサイロ化と データ鮮度の低さ
02 ・”Garbage in, garbage out” の原則 ・表記揺らぎなどの低品質なデータ ・ AI の判断による無駄なコストと 準備工数 データ品質の低さと 準備の手間 03 ・誰が、どのデータに触れるかが 不明確 ・曖昧なルールが招くセキュリティ リスク ・AI 活用の前提となるガバナンスの 欠如 セキュリティと ガバナンスの欠如
CData Sync で データ活用の課題を解決 CData Sync の魅力を 5つに絞ってご紹介いたします IV
CData Sync の特徴 「AI 活用の3つの壁」を乗り越えるCData Sync の特徴 01 データのサイロ化と データ鮮度の低さ
02 データ品質の低さと 準備の手間 03 セキュリティと ガバナンスの欠如 400を超える データソース対応 & 変更データキャプチャ(CDC) 対応 GUIベースのノーコード & SQLベースのデータ変換 オンプレミス & クラウド両対応
BEFORE 業界最多級のさまざまなデータソースに対応しています。 海外だけでなく、kintone やSmart HR といった国産のサービス/アプリケーションにも対応済みです。 400を超えるデータソース対応 AFTER • 部門ごとに異なる業務アプリがあり、
データ収集にCSV 取り込みを繰り返す必要がある • 標準コネクタで接続できず分析を諦めていた • データ収集や整理に時間がかかる • 新しいSaaS アプリが増える度、既存の分析基盤へ データを流し込む開発の手間がかかる • あらゆるデータソースにCData Sync のみで接続 CSV 出力なく、データ集約がジョブ1つで簡単実行 • 好きなツールから、データ分析が可能に • データ収集にかかっていた時間を、分析の時間へ • コネクタ開発や保守業務を手放し、 データマネジメントや分析基盤の整備等の業務に 時間を割ける
BEFORE めまぐるしく変化するビジネスで有効な意思決定をくだすためには、データの鮮度を新鮮に保つ必要があります。 しかし基幹DB に負荷がかかってしまっては本末転倒です。CData Sync は鮮度の良いデータ統合を「賢く」行います。 変更データキャプチャ(CDC)対応 AFTER • データ更新がバッチ処理のため、データ鮮度が低い
• 最新情報に基づいたタイムリーな意思決定が難しい • データ分析結果に、現状と乖離してしまうケースが 多発しており、データを上手く活用できていない • レプリケーション元の負荷を考えると、気軽に 全件洗いがえのレプリケーションはできない • トランザクションのログから変更データを抽出している ため、削除データ抽出も可能 • 変更のあったデータのみを検知するため、 ソースDB への負荷も軽減し、パフォーマンスも良好 • 変更データキャプチャ (CDC機能) で、 常に最新のデータを活用可能
BEFORE 同期元と同期先の接続設定+ジョブの作成の3STEP の簡単設定 SQL やdbt を用いた柔軟なデータ変換にも対応 GUI ベースのノーコード & SQLベースのデータ変換
AFTER • データ分析には、 高度なプログラミングスキルが必要 • データ加工・変換処理は、 専門のエンジニアに依頼する必要がある • ビジネス部門だけでデータ活用を行うのは難しい • GUIベースの直感的な操作で、 誰でも簡単にデータ活用を始められる • SQL やdbt を用いたデータ変換にも対応 高度なデータ変換も自由自在 • ビジネス部門と IT部門 が協力して データ活用を推進できる
BEFORE 自社で構築したN/W 環境内でのみデータの授受が可能なケースでも安心してください。 オンプレミス、クラウド、SaaS のお好きな環境に、CData Sync を導入できます。 オンプレミス & クラウド両対応
AFTER • クラウド専用ツールの場合、データ漏洩の観点や セキュリティポリシー上、導入を見送らざるを得ない • オンプレミス環境でデータ活用基盤を構築するのは 手間もコストもかかる • 自社のシステム環境に最適な導入形態を選べない • オンプレミス、クラウド、SaaS 版と あらゆる環境に対応 • 企業のセキュリティポリシーや システム環境に合わせて、最適な導入形態を選択可能 • オンプレ環境での利用の場合、CData Sync にデータを 持たないため、クローズドに完結 • クラウドホスティングの場合、ソースや基盤と同じ場所 にCData Sync を設置可
BEFORE データ活用基盤の構築には、高額な初期費用と運用コストがかかります。 CData Sync は導入・運用コストを抑え、安心してデータ活用を始められます。 わかりやすい定額料金 AFTER • データ活用基盤の構築には、 高額な初期費用と運用コストがかかる
• データ量が増えるにつれて、料金が跳ね上がる • 予算内でデータ活用を始めるのは難しい • 年額課金というシンプルで分かりやすい料金体系 ランニングコストも予測しやすいため 予算組みを行いやすい • 初期費用を抑え、スモールスタートが可能 • Pro, Enterprise プランは、レコード上限数なし
CData Sync の特徴 AI活用を阻む「5つのデータ基盤の壁」の課題をどのように解決するか+αの特徴をご紹介します 01 データのサイロ化と データ鮮度の低さ 02 データ品質の低さと 準備の手間
03 セキュリティと ガバナンスの欠如 400を超える データソース対応 & 変更データキャプチャ(CDC) 対応 GUIベースのノーコード & SQLベースのデータ変換 オンプレミス & クラウド両対応
CData Sync の導入事例 一部の事例をご紹介 弊社サイトで更に具体的な事例も ご覧になれます V
CData Sync 導入で『建設DX』を実現
CData Sync 導入で『脱Excel』を実現
CData Sync事例集 - 豊富な導入実績 プレゼン資料で紹介しきれなかった事例が、弊社Web サイトに多数掲載されております。 下記QR コード、もしくはURL 先よりご覧ください。 https://www.cdata.com/jp/case-study/?tag=cdata+sync
CData Sync のデモ 3STEPで実現する「AI Ready」 なデータ連携 VI
従来のEAI ツールと何が違うのか これまでのデータ連携は、自分で複雑なフローを組むのが当たり前でした。 CData Syncは、フローやロジックを組むことなく、異なるシステム間のデータを簡単にやり取りします。 従来のEAIツールの場合 STEP.1 データ抽出設定 STEP.3 データ格納設定
STEP.2 データ変換設定 • CRMシステムに接続するための コネクタ設定 • 抽出したいデータ (顧客名、住所、購入履歴など)を SQLなどで指定 • データの抽出頻度(毎日、毎週など) を設定 • 抽出したデータをDWHの形式に 合わせる変換処理を設計 (例:住所を都道府県、市区町村に 分割する) • 不要なデータを削除する処理を設計 • データの型を変換する処理を設計 • DWHに接続するための コネクタを設定 • 変換後のデータを格納する テーブルを指定 • 差分更新(変更があったデータだ け更新する)処理を、SQLやロジ ックを駆使して自分で設計
CData Sync なら これまでのデータ連携は、自分で複雑なフローを組むのが当たり前でした。 CData Syncは、フローやロジックを組むことなく、異なるシステム間のデータを簡単にやり取りします。 CData Sync STEP.1 同期元のDB
の接続設定 STEP.3 ジョブ作成 STEP.2 同期先のDB の接続設定 • レプリケーション元のDB の接続設定 • レプリケーション先のDB の接続設定 • 同期したい要素を選択 • 同期スケジュールの周期設定 • 差分更新の設定 …etc
CData Sync で始めるデータ活用 AI 活用を阻むデータ基盤とは 第1部 完 ご清聴いただきありがとうございました