Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 / Counterfactual VQA: A Cause-Effect Look...
Search
chck
August 16, 2021
Research
0
23
論文読み会 / Counterfactual VQA: A Cause-Effect Look at Language Bias
社内論文読み会、PaperFridayでの発表資料です
chck
August 16, 2021
Tweet
Share
More Decks by chck
See All by chck
CyberAgent AI Lab研修 / Container for Research
chck
0
2k
CyberAgent AI Lab研修 / Code Review in a Team
chck
2
1.9k
論文読み会 / Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights from Leaders on the Forefront
chck
0
52
CyberAgent AI事業本部MLOps研修Container編 / Container for MLOps
chck
2
5.7k
論文読み会 / GLAZE: Protecting Artists from Style Mimicry by Text-to-Image Models
chck
0
39
論文読み会 / On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
chck
0
22
論文読み会 / GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Networks
chck
0
28
機械学習開発のためのコンテナ入門 / Container for ML
chck
0
940
Web系企業研究所における研究開発を加速させるエコシステム / Ecosystem accelerates our R&D in CyberAgent AI Lab
chck
0
150
Other Decks in Research
See All in Research
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
300
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.1k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
270
投資戦略202508
pw
0
570
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
560
20250725-bet-ai-day
cipepser
3
520
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
590
能動適応的実験計画
masakat0
2
1k
湯村研究室の紹介2025 / yumulab2025
yumulab
0
160
超高速データサイエンス
matsui_528
1
210
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
680
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
430
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
697
190k
Typedesign – Prime Four
hannesfritz
42
2.9k
Raft: Consensus for Rubyists
vanstee
140
7.2k
It's Worth the Effort
3n
187
29k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Why Our Code Smells
bkeepers
PRO
340
57k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
How STYLIGHT went responsive
nonsquared
100
5.9k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Transcript
Counterfactual VQA: A Cause-Effect Look at Language Bias 21/08/16 PaperFriday,
Yuki Iwazaki@AI Lab
2 Point: 画像とテキストを両方扱うタスクで、 フルモデルとテキストのみモデルの予測分布間の差分を利用した テキストのバイアス除去法を提案 CVPR 2021: acceptance rate 23.7%
Authors: Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-Sheng Hua, Ji-Rong Wen 選定理由: - Multimodal dataの偏りに悩むことが多い - Debiasに興味がある
Introduction 3
Debiased Visual Question Answering ◂ Visual Question Answering ◂ Answer
the question based on the image 4 Q: Do you see a player? A: Yes. Q: What sports is he playing? A: Tennis.
Debiased Visual Question Answering ◂ Dataset bias in VQA: language
bias 5 (VQA v1 dataset) Q: What sports is … ? Q: How many … ? language priors poor ODD generalization [Goyal, CVPR2017]
Related Work 6
Debiasing Strategies in VQA ◂ VQA-CP...VQAモデルの汎化性を評価するためのdataset ◂ train/testで質問タイプ毎に回答の分布が異なるように ◂ VQAの言語バイアス低減は大きく3種類
◂ 1.視覚情報の補強 ◂ 2.言語情報の弱化 ◂ 3.明示的/暗黙的なData Augmentation 7
Debiasing Strategies in VQA ◂ VQA-CP...VQAモデルの汎化性を評価するためのdataset ◂ train/testで質問タイプ毎に回答の分布が異なるように ◂ VQAの言語バイアス低減は大きく3種類
◂ 1.視覚情報の補強 ◂ 2.言語情報の弱化 ◂ 3.明示的/暗黙的なData Augmentation 8
9
10 Fact: 観測されるデータには常にバイアスがかかっている Challenge: 偏った学習をしていても偏りのない推論ができるか ?
Preliminaries 11
Causal Graph 12 変数間の因果関係を表すグラフ 原因Xが効果Yに直接影響を与えている場合、 X → Yと表す 原因Xが中間変数Mを介して 効果Yに間接的に影響を与えている場合、
X → M → Yと表す
Causal Graph 13 変数間の因果関係を表すグラフ 原因Xが効果Yに直接影響を与えている場合、 X → Yと表す 原因Xが中間変数Mを介して 効果Yに間接的に影響を与えている場合、
X → M → Yと表す コロナ罹患 年齢 ワクチン
Causal effects 異なる方策の介入(treatment)を受けた同一対象の 2つの世界線の結果を擬似的に比較したもの 14 treatment群(e.g.ワクチンあり) control群(e.g.ワクチンなし) Yに対するX=xのtotal effect 中間変数Mが介入しない状態での
XのYへのnatural direct effect. X=x*からX=xに変化したときのYの増加
Cause-Effect Look at VQA 15
16
17
18
Causal Graph for VQA ◂ Causal relations in VQA ◂
A→B: AはBを引き起こす ◂ VQA: VとQはAを引き起こす 19
Causal Graph for VQA 20 ◂ Causal relations in VQA
◂ A→B: AはBを引き起こす ◂ VQA: VとQはAを引き起こす ◂ Direct path: Q→A, V→A ◂ Uni-modal alignment, direct effect
Causal Graph for VQA 21 ◂ Causal relations in VQA
◂ A→B: AはBを引き起こす ◂ VQA: VとQはAを引き起こす ◂ Direct path: Q→A, V→A ◂ Uni-modal alignment, direct effect ◂ Indirect path: V,Q→K→A ◂ Multi-modal reasoning, indirect effect
Ours: Cause-Effect View on VQA 22 Total Effect Nature Direct
Effect Total Indirect Effect VQAにおける因果効果は2シナリオ間( (1), (2) )の比較で導出可能
Implementation: Parameterization 23 V,Q,Kが与えられたときの目的変数の予測スコア Y_{v,q}:
Implementation: Parameterization 24 質問Qが与えられる 与えられない 画像Vが与えられる 与えられない 画像Vと質問Qが与えられる どちらかが与えられない
Implementation: Fusion Strategies 25
Implementation: Training 26
Implementation: Inference 27
Conventional Models 30
Experiments 31
Experiments ◂ VQA-CP dataset ◂ train/testの回答分布が大きく異なる場合に モデルの頑健性を評価するためのdataset ◂ VQA v2
dataset(re-balanced v1) ◂ VQA v1の反省を活かし分布偏りを改善したdataset ◂ metric: Accuracy ◂ baseline ◂ Stacked Attention Network (SAN) ◂ Bottom-up and Top-down Attention (UpDn) ◂ a simplified MUREL (S-MRL) 32
Quantitative Results 33
Quantitative Results 34
Ablation Study 35 baseline with CF-VQAによりbaselineより2%-5%の性能改善
Qualitative Results 37
Qualitative Results 38 Q: Is this room large or small?
Q: What type of flowers are theses? language context “large or small” “what type”
Qualitative Results 39
Conclusion 40
Conclusion ◂ VQAの言語バイアスを軽減するCF-VQAを提案 ◂ 総合効果から言語効果を引き算 ◂ 最近のdebias系の研究は提案手法で統一可能 ◂ 因果効果に基づいて1つのパラメータの追加で baselineを改善
◂ 頑健性とバイアス軽減のバランスが課題 41
Comment ◂ 斎藤さん、安井さん、成田さん、Susan Athey界隈の 有用な記事が無限に出てきました🙏 ◂ 本買ってもう少し勉強します 42
43 Thanks! Any questions? You can find me at: ◂
@chck ◂ #times_chck ◂
[email protected]