Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 / Counterfactual VQA: A Cause-Effect Look...
Search
chck
August 16, 2021
Research
0
20
論文読み会 / Counterfactual VQA: A Cause-Effect Look at Language Bias
社内論文読み会、PaperFridayでの発表資料です
chck
August 16, 2021
Tweet
Share
More Decks by chck
See All by chck
CyberAgent AI Lab研修 / Container for Research
chck
0
1.9k
CyberAgent AI Lab研修 / Code Review in a Team
chck
2
1.8k
論文読み会 / Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights from Leaders on the Forefront
chck
0
48
CyberAgent AI事業本部MLOps研修Container編 / Container for MLOps
chck
2
5.6k
論文読み会 / GLAZE: Protecting Artists from Style Mimicry by Text-to-Image Models
chck
0
31
論文読み会 / On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
chck
0
15
論文読み会 / GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Networks
chck
0
23
機械学習開発のためのコンテナ入門 / Container for ML
chck
0
930
Web系企業研究所における研究開発を加速させるエコシステム / Ecosystem accelerates our R&D in CyberAgent AI Lab
chck
0
140
Other Decks in Research
See All in Research
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
62
30k
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
160
超高速データサイエンス
matsui_528
1
150
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
190
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
310
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
500
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
1.1k
音声感情認識技術の進展と展望
nagase
0
190
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
640
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
130
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.4k
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
320
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
96
6.3k
The Language of Interfaces
destraynor
162
25k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
How GitHub (no longer) Works
holman
315
140k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
How STYLIGHT went responsive
nonsquared
100
5.8k
Six Lessons from altMBA
skipperchong
28
4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
189
55k
Into the Great Unknown - MozCon
thekraken
40
2.1k
For a Future-Friendly Web
brad_frost
180
9.9k
Transcript
Counterfactual VQA: A Cause-Effect Look at Language Bias 21/08/16 PaperFriday,
Yuki Iwazaki@AI Lab
2 Point: 画像とテキストを両方扱うタスクで、 フルモデルとテキストのみモデルの予測分布間の差分を利用した テキストのバイアス除去法を提案 CVPR 2021: acceptance rate 23.7%
Authors: Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-Sheng Hua, Ji-Rong Wen 選定理由: - Multimodal dataの偏りに悩むことが多い - Debiasに興味がある
Introduction 3
Debiased Visual Question Answering ◂ Visual Question Answering ◂ Answer
the question based on the image 4 Q: Do you see a player? A: Yes. Q: What sports is he playing? A: Tennis.
Debiased Visual Question Answering ◂ Dataset bias in VQA: language
bias 5 (VQA v1 dataset) Q: What sports is … ? Q: How many … ? language priors poor ODD generalization [Goyal, CVPR2017]
Related Work 6
Debiasing Strategies in VQA ◂ VQA-CP...VQAモデルの汎化性を評価するためのdataset ◂ train/testで質問タイプ毎に回答の分布が異なるように ◂ VQAの言語バイアス低減は大きく3種類
◂ 1.視覚情報の補強 ◂ 2.言語情報の弱化 ◂ 3.明示的/暗黙的なData Augmentation 7
Debiasing Strategies in VQA ◂ VQA-CP...VQAモデルの汎化性を評価するためのdataset ◂ train/testで質問タイプ毎に回答の分布が異なるように ◂ VQAの言語バイアス低減は大きく3種類
◂ 1.視覚情報の補強 ◂ 2.言語情報の弱化 ◂ 3.明示的/暗黙的なData Augmentation 8
9
10 Fact: 観測されるデータには常にバイアスがかかっている Challenge: 偏った学習をしていても偏りのない推論ができるか ?
Preliminaries 11
Causal Graph 12 変数間の因果関係を表すグラフ 原因Xが効果Yに直接影響を与えている場合、 X → Yと表す 原因Xが中間変数Mを介して 効果Yに間接的に影響を与えている場合、
X → M → Yと表す
Causal Graph 13 変数間の因果関係を表すグラフ 原因Xが効果Yに直接影響を与えている場合、 X → Yと表す 原因Xが中間変数Mを介して 効果Yに間接的に影響を与えている場合、
X → M → Yと表す コロナ罹患 年齢 ワクチン
Causal effects 異なる方策の介入(treatment)を受けた同一対象の 2つの世界線の結果を擬似的に比較したもの 14 treatment群(e.g.ワクチンあり) control群(e.g.ワクチンなし) Yに対するX=xのtotal effect 中間変数Mが介入しない状態での
XのYへのnatural direct effect. X=x*からX=xに変化したときのYの増加
Cause-Effect Look at VQA 15
16
17
18
Causal Graph for VQA ◂ Causal relations in VQA ◂
A→B: AはBを引き起こす ◂ VQA: VとQはAを引き起こす 19
Causal Graph for VQA 20 ◂ Causal relations in VQA
◂ A→B: AはBを引き起こす ◂ VQA: VとQはAを引き起こす ◂ Direct path: Q→A, V→A ◂ Uni-modal alignment, direct effect
Causal Graph for VQA 21 ◂ Causal relations in VQA
◂ A→B: AはBを引き起こす ◂ VQA: VとQはAを引き起こす ◂ Direct path: Q→A, V→A ◂ Uni-modal alignment, direct effect ◂ Indirect path: V,Q→K→A ◂ Multi-modal reasoning, indirect effect
Ours: Cause-Effect View on VQA 22 Total Effect Nature Direct
Effect Total Indirect Effect VQAにおける因果効果は2シナリオ間( (1), (2) )の比較で導出可能
Implementation: Parameterization 23 V,Q,Kが与えられたときの目的変数の予測スコア Y_{v,q}:
Implementation: Parameterization 24 質問Qが与えられる 与えられない 画像Vが与えられる 与えられない 画像Vと質問Qが与えられる どちらかが与えられない
Implementation: Fusion Strategies 25
Implementation: Training 26
Implementation: Inference 27
Conventional Models 30
Experiments 31
Experiments ◂ VQA-CP dataset ◂ train/testの回答分布が大きく異なる場合に モデルの頑健性を評価するためのdataset ◂ VQA v2
dataset(re-balanced v1) ◂ VQA v1の反省を活かし分布偏りを改善したdataset ◂ metric: Accuracy ◂ baseline ◂ Stacked Attention Network (SAN) ◂ Bottom-up and Top-down Attention (UpDn) ◂ a simplified MUREL (S-MRL) 32
Quantitative Results 33
Quantitative Results 34
Ablation Study 35 baseline with CF-VQAによりbaselineより2%-5%の性能改善
Qualitative Results 37
Qualitative Results 38 Q: Is this room large or small?
Q: What type of flowers are theses? language context “large or small” “what type”
Qualitative Results 39
Conclusion 40
Conclusion ◂ VQAの言語バイアスを軽減するCF-VQAを提案 ◂ 総合効果から言語効果を引き算 ◂ 最近のdebias系の研究は提案手法で統一可能 ◂ 因果効果に基づいて1つのパラメータの追加で baselineを改善
◂ 頑健性とバイアス軽減のバランスが課題 41
Comment ◂ 斎藤さん、安井さん、成田さん、Susan Athey界隈の 有用な記事が無限に出てきました🙏 ◂ 本買ってもう少し勉強します 42
43 Thanks! Any questions? You can find me at: ◂
@chck ◂ #times_chck ◂
[email protected]