Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20160601筑波大学大学院図書館情報メディア研究科説明会(博士後期課程の紹介)
Search
Jiro Kikkawa
June 01, 2016
Education
0
94
20160601筑波大学大学院図書館情報メディア研究科説明会(博士後期課程の紹介)
Jiro Kikkawa
June 01, 2016
Tweet
Share
More Decks by Jiro Kikkawa
See All by Jiro Kikkawa
Enhancing Identification of Scholarly Reference on YouTube: Method Development and Analysis of External Link Characteristics / TPDL2024
corgies
0
91
WikipediaやYouTubeにおける論文参照 / joss2024
corgies
1
370
コンテンツ流通基盤概論 2023 / Introduction to Content Sharing 2023
corgies
0
98
Quantitative Analysis of Scholarly References on YouTube: Focusing on Their Research Fields and Contributors / ICADL2023
corgies
0
130
Long-term Progress of DOI Links on Wikipedia: Comparative Analysis of English and Japanese Wikipedia from 2015 to 2023 / A-LIEP2023
corgies
0
120
Detection and Analysis of First Appearances of the Scholarly Bibliographic References on Wikipedia Articles / 20230718
corgies
1
220
Time Lag Analysis of Adding Scholarly References to English Wikipedia: How Rapidly Are They Added to and How Fresh Are They? / iConference2023
corgies
0
100
コンテンツ流通基盤概論 #06 / 20230131
corgies
0
130
コンテンツ流通基盤概論 #05 / 20230126
corgies
0
120
Other Decks in Education
See All in Education
SARA Annual Report 2024-25
sara2023
1
180
第1回大学院理工学系説明会|東京科学大学(Science Tokyo)
sciencetokyo
PRO
0
3.8k
AIC 103 - Applications of Property Valuation: Essential Slides
rmccaic
0
200
Are puppies a ranking factor?
jonoalderson
0
830
미국 교환학생 가서 무료 홈스테이 살면서 인턴 취업하기
maryang
0
110
Tutorial: Foundations of Blind Source Separation and Its Advances in Spatial Self-Supervised Learning
yoshipon
1
110
Design Guidelines and Principles - Lecture 7 - Information Visualisation (4019538FNR)
signer
PRO
0
2.4k
RELC_2025_KYI
otamayuzak
0
120
新卒研修に仕掛ける 学びのサイクル / Implementing Learning Cycles in New Graduate Training
takashi_toyosaki
1
150
Data Physicalisation - Lecture 9 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
440
女子商アプリ開発の軌跡
asial_edu
0
390
SkimaTalk Introduction for Students
skimatalk
0
380
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
KATA
mclloyd
30
14k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
Scaling GitHub
holman
459
140k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
How to Ace a Technical Interview
jacobian
277
23k
Automating Front-end Workflow
addyosmani
1370
200k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
490
Unsuck your backbone
ammeep
671
58k
Building Adaptive Systems
keathley
43
2.6k
Transcript
ਤॻؗใϝσΟΞݚڀ Պ ത࢜ޙظ՝ఔͷհ 0 ஜେֶେֶӃ ਤॻؗใϝσΟΞݚڀՊ ത࢜ޙظ՝ఔ ٢ ࣍ ͖͔ͬΘ
͡Ζ͏
[email protected]
݄ ਫ େֶӃઆ໌ձ!ஜେֶय़ΤϦΞ
͡Ίʹࣗݾհ • ത࢜ޙظ՝ఔ – ݚڀࢦಋ୲ڭһ: ๕ઌੜ – ෭ݚڀࢦಋ୲ڭһ: ߴٱઌੜɺҳଜઌੜ –
ຊઐۀֶੜͷཱͰΛ͠·͢ • ܦྺ 2014 3݄ ੩Ԭେֶใֶ෦ ଔۀ 2016 3݄ ஜେֶେֶӃ ਤॻؗใϝσΟΞݚڀՊ ത࢜લظ՝ఔ मྃ म࢜(ਤॻؗใֶ) 201511݄~ ࠃཱใֶݚڀॴ ಛผڞಉར༻ݚڀһ 2016 4݄~ ਤॻؗใϝσΟΞݚڀՊ ത࢜ޙظ՝ఔ 1
ຊͷ༰ ത࢜ޙظ՝ఔͷೖࢼʹ͍ͭͯ – ͜ͷʹത࢜ޙظ՝ఔडݧرऀ͍·͔͢ େֶӃੜ׆ʹ͍ͭͯ – ത࢜લظ՝ఔͱͷҧ͍ʹ͍ͭͯ 2
1. ത࢜ޙظ՝ఔͷೖࢼ ೖࢼ֓ཁɺࣦഊ͔ΒֶͿത࢜ޙظ՝ఔೖࢼ 3
ത࢜ޙظ՝ఔͷೖࢼ֓ཁ • Ұൠೖࢼʹ݄ظͱ݄ظ͕͋Δ • ʮఏग़ॻྨʯ ʮޱड़ࢼݧʯ – ϓϨθϯςʔγϣϯఔ ࣭ٙԠఔ –
ࢼݧ໊ ˞ത࢜લظ՝ఔͷೖࢼͰ໊ – ɺ͕ͪ࣌ؒੜ͡ΔՄೳੑ͋Γ ࣌ؒ୯Ґ • ࢦಋࢤڭһͱࣄલʹ࿈བྷΛऔΓɺΛಘΔ͜ͱ – ݚڀࢦಋ୲ڭһΛ͓ئ͍Ͱ͖Δ͔Ͳ͏͔Λ֬ೝ͢Δ – ୲Ͱ͖ΔڭһɺͰ͖ͳ͍ڭһ͕͍ΔͷͰɺཁ֬ೝ – ෭ݚڀࢦಋ୲ڭһɺૣΊʹ૬ஊ͢Δͷ͕ϕλʔ ಛʹલظͱޙظͰมߋ͕͋ΔΑ͏ͳਓؾ࣋ͪૣΊʹ 4
ݚڀܭըؔ࿈ͷఏग़ॻྨ ʮݚڀܭըॻʯ – ʮത࢜ޙظ՝ఔͰͷݚڀܭըʯΛهड़ͨ͠ ʮݚڀɾ࣮ܦݧௐॻʯ – ʮ͜Ε·Ͱͷݚڀ༰ʯ ത࢜લظ՝ఔͰͷ ݚڀ ʹ͍ͭͯهड़ͨ͠
• ผ݅Ͱ݄ʹݚڀܭըॻΛॻ͍͍ͯͨͷͰɺͦͷ༰ Λखͨ͠͠ͷΛఏग़ͨ͠ 5
6 illustrated by Rathachai Chawuthai
࣌ɺपғ͔Β͍͍ͨͩͨॿݴ • وॏͳػձΛಘͨͱߟ͑Δͱ͍͍Αʂ – θϛ߹॓ͳͲҰ෦ͷྫ֎Λআ͖ɺ͜͜·Ͱݚڀͷ σΟεΧογϣϯ͕ͬ͘͡ΓͰ͖Δػձوॏ – ͦͷͰղܾՄೳͰ͋Δগͳ͍ͷͷɺ ʮͬ͘͡Γͱߟ͑ଓ͚Δ͜ͱʯΛҙࣝ͢Δػձ •
ʹ͔͜ʹɺসإͰൃද͢Δͱ͍͍Αʂ – ɺࢼݧ͕·ͬͨ͘সͬͯͩ͘͞Βͳͯ͘ɺ ;ͭ͏ʹ٧Έ·ͨ͠ ࢥΘͣۤস͍ͯ͠͠·ͬͨ – ແཧͤͣɺࣗવମͰྑ͍͔ͳʁͱࢥ͍·͢ – ͱʹ͔͘མͪண͍ͯྟΉ͜ͱ͕ॏཁ 7
8 illustrated by Rathachai Chawuthai
ࣦഊ͔ΒֶͿ ത࢜ޙظ՝ఔೖࢼ ೖࢼఔΛ֬ೝ͠·͠ΐ͏ – લͷೖࢼఔͰ४උ͍ͯ͠Δਓ͕͍ͨ – ग़ئ࣌ظʹؾ͍ͨΒ͍͠ ໔আʹ֘͢Δ͔Ͳ͏͔֬ೝ͠·͠ΐ͏ – lݕఆྉʹ͍ͭͯɺࠃඅ֎ࠃਓཹֶੜٴͼฏ
݄ʹຊֶେֶӃम࢜՝ఔए͘͠ത࢜લ ظ՝ఔΛमྃ͠ɺҾ͖ଓ͖ຊֶେֶӃത࢜ޙظ՝ఔ ʹਐֶ͢ΔऀෆཁͰ͢ɻz – IUUQXXXBQ HSBEVBUFUTVLVCBBDKQDPVSTFMJNTMBUUFSHFOFSBM@BV HVTU@DIBSHFIUNM – ԁͷखྉ͕͔͔Γͭͭฦۚͯ͠Β͑·͕ͨ͠ɺ օ͞Μࢲͱಉ͡Α͏ͳࣦഊΛ͠ͳ͍Α͏ʹ͠·͠ΐ͏ 9
2. େֶӃੜ׆ ത࢜લظ՝ఔͱͷҧ͍ʹ͍ͭͯ 10
ത࢜લظ՝ఔͱͷҧ͍ • ಉڃੜͷ͕ݮΔɺ͋·ΓձΘͳ͘ͳΔ – લظͱҧ͍ɺڭࣨʹू·ΔΑ͏ͳػձ͕օແ – ݚڀࢦಋ θϛ ݸผࢦಋ –
ͱʹ͔͘ݚڀΛਐΊΔ • ݸਓ͝ͱʹҟͳΔ׆ಈ͕૿͍͑ͯ͘ – 3" ϦαʔνɾΞγελϯτ – Ͳ͔͜ͷػؔͷݚڀһɺௐࠪһ – ඇৗۈߨࢣ – ͦͷଞ 11
͓ΘΓʹຊͷ·ͱΊ • ത࢜ޙظ՝ఔͷೖࢼ – ݄ظɺ݄ظ – ࣄલʹࢤرڭһʹ࿈བྷΛͱΔ • ग़ئॻྨ
– ʮݚڀܭըॻʯɺʮݚڀɾ࣮ܦݧௐॻʯ • ޱड़ࢼݧ – ϓϨθϯςʔγϣϯ ࣭ٙԠ – ࢼݧਓ 12
͓ΘΓʹຊͷ·ͱΊ • ग़ئʹ͋ͨͬͯ – ఔΛؒҧ͑ͳ͍͜ͱ – ໔আΛΑ֬͘ೝ͓ͯ͘͜͠ͱ • ത࢜ޙظ՝ఔͷେֶӃੜ׆
– ਓ͕ݮΔɺ͋·ΓձΘͳ͘ͳΔ – ͦΕͧΕͷ׆ಈ – ݚڀɺݚڀɺͦͯ͠ݚڀɻ 13