Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20160601筑波大学大学院図書館情報メディア研究科説明会(博士後期課程の紹介)
Search
Jiro Kikkawa
June 01, 2016
Education
0
94
20160601筑波大学大学院図書館情報メディア研究科説明会(博士後期課程の紹介)
Jiro Kikkawa
June 01, 2016
Tweet
Share
More Decks by Jiro Kikkawa
See All by Jiro Kikkawa
Enhancing Identification of Scholarly Reference on YouTube: Method Development and Analysis of External Link Characteristics / TPDL2024
corgies
0
110
WikipediaやYouTubeにおける論文参照 / joss2024
corgies
1
390
コンテンツ流通基盤概論 2023 / Introduction to Content Sharing 2023
corgies
0
99
Quantitative Analysis of Scholarly References on YouTube: Focusing on Their Research Fields and Contributors / ICADL2023
corgies
0
140
Long-term Progress of DOI Links on Wikipedia: Comparative Analysis of English and Japanese Wikipedia from 2015 to 2023 / A-LIEP2023
corgies
0
130
Detection and Analysis of First Appearances of the Scholarly Bibliographic References on Wikipedia Articles / 20230718
corgies
1
230
Time Lag Analysis of Adding Scholarly References to English Wikipedia: How Rapidly Are They Added to and How Fresh Are They? / iConference2023
corgies
0
110
コンテンツ流通基盤概論 #06 / 20230131
corgies
0
130
コンテンツ流通基盤概論 #05 / 20230126
corgies
0
130
Other Decks in Education
See All in Education
『会社を知ってもらう』から『安心して活躍してもらう』までの プロセスとフロー
sasakendayo
0
250
探査機自作ゼミ2025スライド
sksat
3
730
自己紹介 / who-am-i
yasulab
PRO
3
5.4k
Education-JAWS #3 ~教育現場に、AWSのチカラを~
masakiokuda
0
220
日本の教育の未来 を考える テクノロジーは教育をどのように変えるのか
kzkmaeda
1
230
データ分析
takenawa
0
14k
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
340
アウトプット0のエンジニアが半年でアウトプットしまくった話 With JAWS-UG
masakiokuda
2
380
予習動画
takenawa
0
15k
ANS-C01_2回不合格から合格までの道程
amarelo_n24
1
310
Transición del Management al Neuromanagement
jvpcubias
0
160
モンテカルロ法(3) 発展的アルゴリズム / Simulation 04
kaityo256
PRO
8
1.4k
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
It's Worth the Effort
3n
187
28k
Facilitating Awesome Meetings
lara
55
6.5k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
480
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Become a Pro
speakerdeck
PRO
29
5.5k
Transcript
ਤॻؗใϝσΟΞݚڀ Պ ത࢜ޙظ՝ఔͷհ 0 ஜେֶେֶӃ ਤॻؗใϝσΟΞݚڀՊ ത࢜ޙظ՝ఔ ٢ ࣍ ͖͔ͬΘ
͡Ζ͏
[email protected]
݄ ਫ େֶӃઆ໌ձ!ஜେֶय़ΤϦΞ
͡Ίʹࣗݾհ • ത࢜ޙظ՝ఔ – ݚڀࢦಋ୲ڭһ: ๕ઌੜ – ෭ݚڀࢦಋ୲ڭһ: ߴٱઌੜɺҳଜઌੜ –
ຊઐۀֶੜͷཱͰΛ͠·͢ • ܦྺ 2014 3݄ ੩Ԭେֶใֶ෦ ଔۀ 2016 3݄ ஜେֶେֶӃ ਤॻؗใϝσΟΞݚڀՊ ത࢜લظ՝ఔ मྃ म࢜(ਤॻؗใֶ) 201511݄~ ࠃཱใֶݚڀॴ ಛผڞಉར༻ݚڀһ 2016 4݄~ ਤॻؗใϝσΟΞݚڀՊ ത࢜ޙظ՝ఔ 1
ຊͷ༰ ത࢜ޙظ՝ఔͷೖࢼʹ͍ͭͯ – ͜ͷʹത࢜ޙظ՝ఔडݧرऀ͍·͔͢ େֶӃੜ׆ʹ͍ͭͯ – ത࢜લظ՝ఔͱͷҧ͍ʹ͍ͭͯ 2
1. ത࢜ޙظ՝ఔͷೖࢼ ೖࢼ֓ཁɺࣦഊ͔ΒֶͿത࢜ޙظ՝ఔೖࢼ 3
ത࢜ޙظ՝ఔͷೖࢼ֓ཁ • Ұൠೖࢼʹ݄ظͱ݄ظ͕͋Δ • ʮఏग़ॻྨʯ ʮޱड़ࢼݧʯ – ϓϨθϯςʔγϣϯఔ ࣭ٙԠఔ –
ࢼݧ໊ ˞ത࢜લظ՝ఔͷೖࢼͰ໊ – ɺ͕ͪ࣌ؒੜ͡ΔՄೳੑ͋Γ ࣌ؒ୯Ґ • ࢦಋࢤڭһͱࣄલʹ࿈བྷΛऔΓɺΛಘΔ͜ͱ – ݚڀࢦಋ୲ڭһΛ͓ئ͍Ͱ͖Δ͔Ͳ͏͔Λ֬ೝ͢Δ – ୲Ͱ͖ΔڭһɺͰ͖ͳ͍ڭһ͕͍ΔͷͰɺཁ֬ೝ – ෭ݚڀࢦಋ୲ڭһɺૣΊʹ૬ஊ͢Δͷ͕ϕλʔ ಛʹલظͱޙظͰมߋ͕͋ΔΑ͏ͳਓؾ࣋ͪૣΊʹ 4
ݚڀܭըؔ࿈ͷఏग़ॻྨ ʮݚڀܭըॻʯ – ʮത࢜ޙظ՝ఔͰͷݚڀܭըʯΛهड़ͨ͠ ʮݚڀɾ࣮ܦݧௐॻʯ – ʮ͜Ε·Ͱͷݚڀ༰ʯ ത࢜લظ՝ఔͰͷ ݚڀ ʹ͍ͭͯهड़ͨ͠
• ผ݅Ͱ݄ʹݚڀܭըॻΛॻ͍͍ͯͨͷͰɺͦͷ༰ Λखͨ͠͠ͷΛఏग़ͨ͠ 5
6 illustrated by Rathachai Chawuthai
࣌ɺपғ͔Β͍͍ͨͩͨॿݴ • وॏͳػձΛಘͨͱߟ͑Δͱ͍͍Αʂ – θϛ߹॓ͳͲҰ෦ͷྫ֎Λআ͖ɺ͜͜·Ͱݚڀͷ σΟεΧογϣϯ͕ͬ͘͡ΓͰ͖Δػձوॏ – ͦͷͰղܾՄೳͰ͋Δগͳ͍ͷͷɺ ʮͬ͘͡Γͱߟ͑ଓ͚Δ͜ͱʯΛҙࣝ͢Δػձ •
ʹ͔͜ʹɺসإͰൃද͢Δͱ͍͍Αʂ – ɺࢼݧ͕·ͬͨ͘সͬͯͩ͘͞Βͳͯ͘ɺ ;ͭ͏ʹ٧Έ·ͨ͠ ࢥΘͣۤস͍ͯ͠͠·ͬͨ – ແཧͤͣɺࣗવମͰྑ͍͔ͳʁͱࢥ͍·͢ – ͱʹ͔͘མͪண͍ͯྟΉ͜ͱ͕ॏཁ 7
8 illustrated by Rathachai Chawuthai
ࣦഊ͔ΒֶͿ ത࢜ޙظ՝ఔೖࢼ ೖࢼఔΛ֬ೝ͠·͠ΐ͏ – લͷೖࢼఔͰ४උ͍ͯ͠Δਓ͕͍ͨ – ग़ئ࣌ظʹؾ͍ͨΒ͍͠ ໔আʹ֘͢Δ͔Ͳ͏͔֬ೝ͠·͠ΐ͏ – lݕఆྉʹ͍ͭͯɺࠃඅ֎ࠃਓཹֶੜٴͼฏ
݄ʹຊֶେֶӃम࢜՝ఔए͘͠ത࢜લ ظ՝ఔΛमྃ͠ɺҾ͖ଓ͖ຊֶେֶӃത࢜ޙظ՝ఔ ʹਐֶ͢ΔऀෆཁͰ͢ɻz – IUUQXXXBQ HSBEVBUFUTVLVCBBDKQDPVSTFMJNTMBUUFSHFOFSBM@BV HVTU@DIBSHFIUNM – ԁͷखྉ͕͔͔Γͭͭฦۚͯ͠Β͑·͕ͨ͠ɺ օ͞Μࢲͱಉ͡Α͏ͳࣦഊΛ͠ͳ͍Α͏ʹ͠·͠ΐ͏ 9
2. େֶӃੜ׆ ത࢜લظ՝ఔͱͷҧ͍ʹ͍ͭͯ 10
ത࢜લظ՝ఔͱͷҧ͍ • ಉڃੜͷ͕ݮΔɺ͋·ΓձΘͳ͘ͳΔ – લظͱҧ͍ɺڭࣨʹू·ΔΑ͏ͳػձ͕օແ – ݚڀࢦಋ θϛ ݸผࢦಋ –
ͱʹ͔͘ݚڀΛਐΊΔ • ݸਓ͝ͱʹҟͳΔ׆ಈ͕૿͍͑ͯ͘ – 3" ϦαʔνɾΞγελϯτ – Ͳ͔͜ͷػؔͷݚڀһɺௐࠪһ – ඇৗۈߨࢣ – ͦͷଞ 11
͓ΘΓʹຊͷ·ͱΊ • ത࢜ޙظ՝ఔͷೖࢼ – ݄ظɺ݄ظ – ࣄલʹࢤرڭһʹ࿈བྷΛͱΔ • ग़ئॻྨ
– ʮݚڀܭըॻʯɺʮݚڀɾ࣮ܦݧௐॻʯ • ޱड़ࢼݧ – ϓϨθϯςʔγϣϯ ࣭ٙԠ – ࢼݧਓ 12
͓ΘΓʹຊͷ·ͱΊ • ग़ئʹ͋ͨͬͯ – ఔΛؒҧ͑ͳ͍͜ͱ – ໔আΛΑ֬͘ೝ͓ͯ͘͜͠ͱ • ത࢜ޙظ՝ఔͷେֶӃੜ׆
– ਓ͕ݮΔɺ͋·ΓձΘͳ͘ͳΔ – ͦΕͧΕͷ׆ಈ – ݚڀɺݚڀɺͦͯ͠ݚڀɻ 13