Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20160601筑波大学大学院図書館情報メディア研究科説明会(博士後期課程の紹介)
Search
Jiro Kikkawa
June 01, 2016
Education
0
99
20160601筑波大学大学院図書館情報メディア研究科説明会(博士後期課程の紹介)
Jiro Kikkawa
June 01, 2016
Tweet
Share
More Decks by Jiro Kikkawa
See All by Jiro Kikkawa
Enhancing Identification of Scholarly Reference on YouTube: Method Development and Analysis of External Link Characteristics / TPDL2024
corgies
0
140
WikipediaやYouTubeにおける論文参照 / joss2024
corgies
1
420
コンテンツ流通基盤概論 2023 / Introduction to Content Sharing 2023
corgies
0
110
Quantitative Analysis of Scholarly References on YouTube: Focusing on Their Research Fields and Contributors / ICADL2023
corgies
0
170
Long-term Progress of DOI Links on Wikipedia: Comparative Analysis of English and Japanese Wikipedia from 2015 to 2023 / A-LIEP2023
corgies
0
160
Detection and Analysis of First Appearances of the Scholarly Bibliographic References on Wikipedia Articles / 20230718
corgies
1
240
Time Lag Analysis of Adding Scholarly References to English Wikipedia: How Rapidly Are They Added to and How Fresh Are They? / iConference2023
corgies
0
130
コンテンツ流通基盤概論 #06 / 20230131
corgies
0
140
コンテンツ流通基盤概論 #05 / 20230126
corgies
0
140
Other Decks in Education
See All in Education
相互コミュニケーションの難しさ
masakiokuda
0
320
20251119 如果是勇者欣美爾的話, 他會怎麼做? 東海資工
pichuang
0
140
NUTMEG紹介スライド
mugiiicha
0
470
仏教の源流からの奈良県中南和_奈良まほろば館‗飛鳥・藤原DAO/asuka-fujiwara_Saraswati
tkimura12
0
170
Презентация "Знаю Россию"
spilsart
0
380
Software
irocho
0
650
AIは若者の成長機会を奪うのか?
frievea
0
140
3Dプリンタでロボット作るよ#5_ロボット向け3Dプリンタ材料
shiba_8ro
0
130
いわゆる「ふつう」のキャリアを歩んだ人の割合(若者向け)
hysmrk
0
260
Padlet opetuksessa
matleenalaakso
9
15k
IKIGAI World Fes:program
tsutsumi
1
2.6k
沖ハック~のみぞうさんとハッキングチャレンジ☆~
nomizone
1
530
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
54
7.9k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
RailsConf 2023
tenderlove
30
1.3k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.3k
How GitHub (no longer) Works
holman
316
140k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Making Projects Easy
brettharned
120
6.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Transcript
ਤॻؗใϝσΟΞݚڀ Պ ത࢜ޙظ՝ఔͷհ 0 ஜେֶେֶӃ ਤॻؗใϝσΟΞݚڀՊ ത࢜ޙظ՝ఔ ٢ ࣍ ͖͔ͬΘ
͡Ζ͏
[email protected]
݄ ਫ େֶӃઆ໌ձ!ஜେֶय़ΤϦΞ
͡Ίʹࣗݾհ • ത࢜ޙظ՝ఔ – ݚڀࢦಋ୲ڭһ: ๕ઌੜ – ෭ݚڀࢦಋ୲ڭһ: ߴٱઌੜɺҳଜઌੜ –
ຊઐۀֶੜͷཱͰΛ͠·͢ • ܦྺ 2014 3݄ ੩Ԭେֶใֶ෦ ଔۀ 2016 3݄ ஜେֶେֶӃ ਤॻؗใϝσΟΞݚڀՊ ത࢜લظ՝ఔ मྃ म࢜(ਤॻؗใֶ) 201511݄~ ࠃཱใֶݚڀॴ ಛผڞಉར༻ݚڀһ 2016 4݄~ ਤॻؗใϝσΟΞݚڀՊ ത࢜ޙظ՝ఔ 1
ຊͷ༰ ത࢜ޙظ՝ఔͷೖࢼʹ͍ͭͯ – ͜ͷʹത࢜ޙظ՝ఔडݧرऀ͍·͔͢ େֶӃੜ׆ʹ͍ͭͯ – ത࢜લظ՝ఔͱͷҧ͍ʹ͍ͭͯ 2
1. ത࢜ޙظ՝ఔͷೖࢼ ೖࢼ֓ཁɺࣦഊ͔ΒֶͿത࢜ޙظ՝ఔೖࢼ 3
ത࢜ޙظ՝ఔͷೖࢼ֓ཁ • Ұൠೖࢼʹ݄ظͱ݄ظ͕͋Δ • ʮఏग़ॻྨʯ ʮޱड़ࢼݧʯ – ϓϨθϯςʔγϣϯఔ ࣭ٙԠఔ –
ࢼݧ໊ ˞ത࢜લظ՝ఔͷೖࢼͰ໊ – ɺ͕ͪ࣌ؒੜ͡ΔՄೳੑ͋Γ ࣌ؒ୯Ґ • ࢦಋࢤڭһͱࣄલʹ࿈བྷΛऔΓɺΛಘΔ͜ͱ – ݚڀࢦಋ୲ڭһΛ͓ئ͍Ͱ͖Δ͔Ͳ͏͔Λ֬ೝ͢Δ – ୲Ͱ͖ΔڭһɺͰ͖ͳ͍ڭһ͕͍ΔͷͰɺཁ֬ೝ – ෭ݚڀࢦಋ୲ڭһɺૣΊʹ૬ஊ͢Δͷ͕ϕλʔ ಛʹલظͱޙظͰมߋ͕͋ΔΑ͏ͳਓؾ࣋ͪૣΊʹ 4
ݚڀܭըؔ࿈ͷఏग़ॻྨ ʮݚڀܭըॻʯ – ʮത࢜ޙظ՝ఔͰͷݚڀܭըʯΛهड़ͨ͠ ʮݚڀɾ࣮ܦݧௐॻʯ – ʮ͜Ε·Ͱͷݚڀ༰ʯ ത࢜લظ՝ఔͰͷ ݚڀ ʹ͍ͭͯهड़ͨ͠
• ผ݅Ͱ݄ʹݚڀܭըॻΛॻ͍͍ͯͨͷͰɺͦͷ༰ Λखͨ͠͠ͷΛఏग़ͨ͠ 5
6 illustrated by Rathachai Chawuthai
࣌ɺपғ͔Β͍͍ͨͩͨॿݴ • وॏͳػձΛಘͨͱߟ͑Δͱ͍͍Αʂ – θϛ߹॓ͳͲҰ෦ͷྫ֎Λআ͖ɺ͜͜·Ͱݚڀͷ σΟεΧογϣϯ͕ͬ͘͡ΓͰ͖Δػձوॏ – ͦͷͰղܾՄೳͰ͋Δগͳ͍ͷͷɺ ʮͬ͘͡Γͱߟ͑ଓ͚Δ͜ͱʯΛҙࣝ͢Δػձ •
ʹ͔͜ʹɺসإͰൃද͢Δͱ͍͍Αʂ – ɺࢼݧ͕·ͬͨ͘সͬͯͩ͘͞Βͳͯ͘ɺ ;ͭ͏ʹ٧Έ·ͨ͠ ࢥΘͣۤস͍ͯ͠͠·ͬͨ – ແཧͤͣɺࣗવମͰྑ͍͔ͳʁͱࢥ͍·͢ – ͱʹ͔͘མͪண͍ͯྟΉ͜ͱ͕ॏཁ 7
8 illustrated by Rathachai Chawuthai
ࣦഊ͔ΒֶͿ ത࢜ޙظ՝ఔೖࢼ ೖࢼఔΛ֬ೝ͠·͠ΐ͏ – લͷೖࢼఔͰ४උ͍ͯ͠Δਓ͕͍ͨ – ग़ئ࣌ظʹؾ͍ͨΒ͍͠ ໔আʹ֘͢Δ͔Ͳ͏͔֬ೝ͠·͠ΐ͏ – lݕఆྉʹ͍ͭͯɺࠃඅ֎ࠃਓཹֶੜٴͼฏ
݄ʹຊֶେֶӃम࢜՝ఔए͘͠ത࢜લ ظ՝ఔΛमྃ͠ɺҾ͖ଓ͖ຊֶେֶӃത࢜ޙظ՝ఔ ʹਐֶ͢ΔऀෆཁͰ͢ɻz – IUUQXXXBQ HSBEVBUFUTVLVCBBDKQDPVSTFMJNTMBUUFSHFOFSBM@BV HVTU@DIBSHFIUNM – ԁͷखྉ͕͔͔Γͭͭฦۚͯ͠Β͑·͕ͨ͠ɺ օ͞Μࢲͱಉ͡Α͏ͳࣦഊΛ͠ͳ͍Α͏ʹ͠·͠ΐ͏ 9
2. େֶӃੜ׆ ത࢜લظ՝ఔͱͷҧ͍ʹ͍ͭͯ 10
ത࢜લظ՝ఔͱͷҧ͍ • ಉڃੜͷ͕ݮΔɺ͋·ΓձΘͳ͘ͳΔ – લظͱҧ͍ɺڭࣨʹू·ΔΑ͏ͳػձ͕օແ – ݚڀࢦಋ θϛ ݸผࢦಋ –
ͱʹ͔͘ݚڀΛਐΊΔ • ݸਓ͝ͱʹҟͳΔ׆ಈ͕૿͍͑ͯ͘ – 3" ϦαʔνɾΞγελϯτ – Ͳ͔͜ͷػؔͷݚڀһɺௐࠪһ – ඇৗۈߨࢣ – ͦͷଞ 11
͓ΘΓʹຊͷ·ͱΊ • ത࢜ޙظ՝ఔͷೖࢼ – ݄ظɺ݄ظ – ࣄલʹࢤرڭһʹ࿈བྷΛͱΔ • ग़ئॻྨ
– ʮݚڀܭըॻʯɺʮݚڀɾ࣮ܦݧௐॻʯ • ޱड़ࢼݧ – ϓϨθϯςʔγϣϯ ࣭ٙԠ – ࢼݧਓ 12
͓ΘΓʹຊͷ·ͱΊ • ग़ئʹ͋ͨͬͯ – ఔΛؒҧ͑ͳ͍͜ͱ – ໔আΛΑ֬͘ೝ͓ͯ͘͜͠ͱ • ത࢜ޙظ՝ఔͷେֶӃੜ׆
– ਓ͕ݮΔɺ͋·ΓձΘͳ͘ͳΔ – ͦΕͧΕͷ׆ಈ – ݚڀɺݚڀɺͦͯ͠ݚڀɻ 13