Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Counterfactual learning to rank: introduction
Search
Daiki Tanaka
May 02, 2020
Research
0
620
Counterfactual learning to rank: introduction
一般的なランキング学習からcounterfactual LTRへの導入
Daiki Tanaka
May 02, 2020
Tweet
Share
More Decks by Daiki Tanaka
See All by Daiki Tanaka
カーネル法概観
daikitanak
0
470
カーネル法:正定値カーネルの理論
daikitanak
0
64
[Paper reading] L-SHAPLEY AND C-SHAPLEY: EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA
daikitanak
1
170
[Paper Reading] Attention is All You Need
daikitanak
0
110
Interpretability of Machine Learning : Paper reading (LIME)
daikitanak
0
120
[Paper reading] Local Outlier Detection With Interpretation
daikitanak
0
61
Other Decks in Research
See All in Research
한국어 오픈소스 거대 언어 모델의 가능성: 새로운 시대의 언어 이해와 생성
inureyes
PRO
0
230
コーパスを丸呑みしたモデルから言語の何がわかるか
eumesy
PRO
9
2.6k
ドローンやICTを活用した持続可能なまちづくりに関する研究
nro2daisuke
0
160
Poster: Feasibility of Runtime-Neutral Wasm Instrumentation for Edge-Cloud Workload Handover
chikuwait
0
360
大規模言語モデルを用いたニュースデータのセンチメント判定モデルの開発および実体経済センチメントインデックスの構成
nomamist
1
130
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
24
6k
ベイズ的方法に基づく統計的因果推論の基礎
holyshun
0
830
CUNY DHI_Lightning Talks_2024
digitalfellow
0
530
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
5k
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
1.1k
インドネシアのQA事情を紹介するの
yujijs
0
110
BtoB プロダクトにおけるインサイトマネジメントの必要性 現場ドリブンなカミナシがインサイトマネジメントに取り組むワケ / Why field-driven Kaminashi is working on insight management
kaminashi
1
300
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
11
1.3k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
580
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.3k
Stop Working from a Prison Cell
hatefulcrawdad
268
20k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
Git: the NoSQL Database
bkeepers
PRO
428
65k
Transcript
Unbiased Learning to Rank May 7, 2020
Learning to rank ઃఆ Supervised LTR Pointwise loss Pairwise loss
Listtwise loss Counterfactual Learning to Rank Counterfactual Evaluation Inverse Propensity Scoring Propensity-weighted Learning to Rank 2
Learning to rank: ઃఆ ೖྗɿ จॻͷू߹ D ग़ྗɿ จॻͷॱҐ R
= (R1; R2; R3:::) ͨͩ͠ɺ֤จॻʹϞσϧ f„ ʹΑͬͯείΞ͕͍͍ͭͯͯ f„ (R1) – f„ (R2) – f„ (R3) ::: ͱͳ͍ͬͯΔɻ(ߴ͍είΞ͕͚ΒΕΔ΄ͲॱҐ͕ߴ͍) Learning to Rank (LTR) ͷత࠷దͳॱҐΛग़ྗ͢ΔϞσϧ f„ ͷύϥϝʔλ „ Λ σʔλ͔ΒٻΊΔ͜ͱɻ 3
Supervised LTR ڭࢣ͋Γ LTR Ͱɺ › ݕࡧΫΤϦ › จॻू߹ ›
ॱҐͷϥϕϧ ΛؚΉσʔληοτΛͬͯϞσϧύϥϝʔλΛٻΊΔɻ ڭࢣ͋Γ LTR Ͱ༻͍ΒΕΔଛࣦओʹ 3 ͭɿ › Pointwise loss › Pairwise loss › Listwise loss y (d) ʹΑͬͯɺจॻ d ͷݕࡧΫΤϦͷؔ࿈Λද͢ͱ͢Δɻ(େ͖͍΄ͲॱҐͷ্Ґʹ ͖ͯཉ͍͠) 4
Pointwise loss Pointwise loss ɺॱҐͷਪఆΛྨɾճؼͱͯ͠ղ͘ɻྫ͑ɺ௨ৗͷճؼଛࣦ (squared loss) ͱͯ͠ҎԼͷΑ͏ʹ༩͑Δɿ Lpointwise :=
1 N N X i=1 (f„ (di) ` y (di))2 Pointwise loss ͷɺϞσϧͷग़ྗΛॱҐͱͯ͠͏͜ͱΛߟྀʹೖΕ͍ͯͳ͍͜ ͱɻLTR Ͱग़ྗͱͯ͠ಘΒΕΔείΞΛฒͼସ͑ͯಘΒΕΔॱҐʹͷΈؔ৺͕͋Δɻ 5
Pairwise loss Pairwise loss Ͱɺ2 ͭͷจॻؒͷ૬ରతͳείΞͷେখΛߟྀʹ͍ΕΔɻྫ͑ɺҎԼ ͷΑ͏ͳ hinge-loss Λ༩͑Δʀ Lpairwise
:= X y(di)>y(dj) max (0; 1 ` (f„ (di) ` f„ (di))): ॱҐ͕૬ରతʹߴ͍จॻείΞ͕ߴ͘ɺॱҐ͕͍จॻείΞΛ͘͢Δؾ࣋ͪɻ Pairwise loss ͷɺશͯͷهࣄϖΞΛಉ༷ʹѻ͏͜ͱɻ࣮ͦͯ͠༻্ top100 ͱ top10 ޙऀͷํ͕ॏࢹ͞ΕΔ͜ͱɻPairwise loss Ͱ top100 ͷԼͷํͷॱҐΛվળ ͤ͞ΔͨΊʹ্ҐͷॱҐΛ٘ਜ਼ʹ͢Δ͜ͱ͕͋Γ͑ͯ͠·͏ɻ 6
Listwise loss Listwise loss ͰॱҐࢦඪΛ࠷దԽ͢Δɻ՝ɺॱҐࢦඪ͕ඍՄೳͰͳ͍͜ͱɻ ྫ͑ɺDCG ɿ DCG = N
X i=1 y (di) log2 (rank (di) + 1) Ͱ͋Δ͕ɺlog2 (rank (di) + 1) ඍෆՄೳͰ͋Δɻ ͦͷͨΊʹ֬తۙࣅΛ༻͍Δํ๏ (ListNetɺListMLE) ɺώϡʔϦεςΟοΫॱҐ ࢦඪͷόϯυΛ࠷దԽ͢Δख๏͕͋Δɻ(LambdaRankɺLambdaLoss) ྫ͑ɺ LambdaRank ͷଛࣦ DCG ͷόϯυͱͳ͍ͬͯΔɿ LLambdaRank := X y(di)>y(dj) log (1 + exp (f„ (dj) ` f„ (di))) j´DCGj 7
ҼՌධՁ తɿ৽͍͠ϥϯΩϯάؔ f„ ΛɺผͷϥϯΩϯάؔ fdeploy ͷԼͰूΊΒΕͨաڈ ͷσʔλ (ΫϦοΫσʔλͳͲ) ΛͬͯධՁ͍ͨ͠ɻ ҎԼͷ
2 ͭͷ߹ʹ͍ͭͯߟ͑Δɻ › શͯͷจॻʹ͍ͭͯਅͷؔ࿈ y (di) ͕طͰ͋Δ࣌ › y (di) Θ͔Βͳ͍͕ɺΫϦοΫใͳͲͷ҉తͳϑΟʔυόοΫͷΈར༻Մೳͳ࣌ 8
ҼՌධՁɿϥϕϧ͕طͳΒશʹධՁ͕Ͱ͖Δ શͯͷจॻʹ͍ͭͯਅͷϥϕϧ y (di) ͕طͰ͋Δ࣌ɺIR(ใݕࡧ) ࢦඪΛܭࢉͰ͖Δɿ ´ (f„; D; y)
= X di2D – (rank (di j f„; D)) ´ y (di) ͜͜Ͱɺ– ॱҐॏΈ͚ؔͰ͋ͬͯɺྫ͑ɿ APR: – (r) = r DCG: – (r) = 1 log2 (1+r) ͳͲ͕༻͍ΒΕΔɻ 9
ҼՌධՁ y (di) Θ͔Βͳ͍͕ɺΫϦοΫใͳͲͷ҉తͳϑΟʔυόοΫͷΈར༻Մೳͳ࣌ɿ › ͋Δจॻʹର͢ΔΫϦοΫɺͦͷจॻ͕ؔ࿈͍ͯ͠Δ͜ͱΛࣔ͢ɺόΠΞεɾϊΠζ ͖ͭͷࢦඪʹͳ͍ͬͯΔɻ › ΫϦοΫ͞Εͳ͔͔ͬͨΒͱ͍ͬͯͦͷจॻ͕ؔͳ͍Θ͚Ͱͳ͍ɻ(จॻ͕ؔͳ ͍ɾϢʔβ͕จॻΛ؍ଌ͍ͯ͠ͳ͍ɾϥϯμϜཁૉʹΑΔͷ)
ଟ͘ͷ؍ଌσʔλʹ͍ͭͯฏۉΛऔΕϊΠζআڈͰ͖Δͱߟ͑ΒΕΔ͕ɺόΠΞεআ ڈͰ͖ͳ͍ɻ 10
ҼՌධՁɿ؍ଌɾΫϦοΫϞσϧ Ϣʔβͷ؍ଌٴͼจॻͷؔ࿈ͷΈΛߟྀʹೖΕΔͱɺϢʔβͷΫϦοΫҎԼͷΑ͏ʹϞ σϦϯάͰ͖ͦ͏ɿ › ϥϯΩϯά R ʹ͓͍ͯจॻ di ͕؍ଌ͞ΕΔ (oi
= 1 Ͱද͢) ֬ɺ P (oi = 1 j R; di) (؍ଌ͞ΕΔ֬ؔ࿈ʹؔͳ͍ͱԾఆ͍ͯ͠Δɻ) › ؔ࿈ y (di) ͱ؍ଌ oi ͕༩͑ΒΕͨ࣌ͷɺจॻ di ͕ΫϦοΫ͞ΕΔ֬ (ci = 1 Ͱද͢) ɺ P (ci = 1 j oi; y (di)) › ΫϦοΫ؍ଌ͞Εͨจॻʹ͔͠ى͜Βͳ͍ͨΊɺϥϯΩϯά R ʹ͓͍ͯΫϦοΫ͞ ΕΔ֬ɿ P (ci = 1 ^ oi = 1 j y (di) ; R) = P (ci = 1 j oi = 1; y (di)) ´ P (oi = 1 j R; di) 11
ҼՌධՁɿ´ (f„; D; y) ͷφΠʔϒਪఆ ´ (f„; D; y) ΛφΠʔϒʹਪఆ͢ΔʹɺΫϦοΫͷใ
(ci) Λਅͷؔ࿈ϥϕϧ (y (di)) ͷΘΓʹ͑Αͯ͘ɺ ´NAIVE (f„; D; c) := X di2D – (rank (di j f„; D)) ´ ci ͱͳΔɻ ΫϦοΫʹϊΠζ͕͍ͬͯͳ͍࣌ɺͭ·Γ P (ci = 1 j oi = 1; y (di)) = y (di) Ͱ͋Δ࣌Ͱ͑͞ɺφΠʔϒਪఆ؍ଌόΠΞεΛड͚͍ͯΔɿ Eo ˆ´NAIVE (f„; D; c)˜ = Eo 2 4 X di2D – (rank (di j f„; D)) ´ ci 3 5 = Eo 2 6 4 X di:oi=1^y(di)=1 – (rank (di j f„; D)) 3 7 5 = X di:y(di)=1 P (oi = 1 j R; di)– (rank (di j f„; D)) = X di2D P (oi = 1 j R; di)– (rank (di j f„; D)) ´ y (di) 12
ҼՌධՁɿ´ (f„; D; y) ͷφΠʔϒਪఆ φΠʔϒਪఆɿ Eo ˆ´NAIVE (f„; D;
c)˜ = X di:y(di)=1 P (oi = 1 j R; di)– (rank (di j f„; D)) ͰɺͦΕͧΕͷจॻͷɺϩάऩू࣌ͷϥϯΩϯά R Ͱͷ؍ଌ֬ͰॏΈͨ͠ਪఆʹͳͬ ͯ͠·͏ɻ ϥϯΩϯάͰɺߴॱҐͷจॻ΄Ͳ؍ଌ͞Ε͍͢ɿ͜ΕΛ position bias ͱݺͿɻϩάऩ ूͷࡍʹߴॱҐʹදࣔ͞Εͨจॻਅͷؔ࿈ΑΓؔ࿈͕͋ΔɺͱόΠΞεΛड͚ͯ͠· ͏ɻ όΠΞεΛআڈ͢ΔͨΊʹɺP (oi = 1 j R; di) Λਪఆ͠ɺิਖ਼ͯ͋͛͠Εྑͦ͞͏ ! είΞʹΑΔόΠΞεআڈ 13
είΞΛ༻͍ͨόΠΞεআڈ Inverse Propensity Scoring(IPS) ʹΑͬͯόΠΞεΛআڈ͢Δɿ ´IPS (f„; D; c) :=
X di2D – (rank (di j f„; D)) P (oi = 1 j R; di) ´ ci ͜͜ͰɺP (oi = 1 j R; di) ϩάऩूதʹදࣔ͞ΕͨϥϯΩϯά R Ͱจॻ di ͕؍ଌ͞ ΕΔ֬Ͱ͋Δɻ´IPS (f„; D; c) ΫϦοΫϊΠζ͕ͳ͍߹ɺͭ·Γ P (ci = 1 j oi = 1; y (di)) = y (di) Ͱ͋Δ࣌ʹ ´ (f„; D; y) ͷෆภਪఆྔͰ͋Δɿ Eo ˆ´IPS (f„; D; c)˜ = Eo 2 4 X di2D – (rank (di j f„; D)) P (oi = 1 j R; di) ´ ci 3 5 = Eo 2 6 4 X di:oi=1^y(di)=1 – (rank (di j f„; D)) P (oi = 1 j R; di) 3 7 5 = X di:y(di)=1 P (oi = 1 j R; di) ´ – (rank (di j f„; D)) P (oi = 1 j R; di) = X di2D – (rank (di j f„; D)) ´ y (di) = ´ (f„; D; y) : 14
Propensity-weighted LTR IPS ´ (f„; D; y) ͷෆภਪఆͰ͋ͬͨɻΑͬͯɺ࠷దͳϞσϧύϥϝʔλ „
IPS Λ ࠷దԽ͢Δ͜ͱͰٻΊΔ͜ͱ͕Ͱ͖ΔɻIPS Λ࠷దԽ͢ΔࡍɺϥϯΩϯάࢦඪ – (r) ͷඍ ෆՄೳੑʹରॲ͢ΔͨΊɺ– (r) ͷ bound Λར༻͢Δɻ Propensity-weighted LTR ͷྲྀΕɿ › ΫϦοΫͷείΞΛਪఆɿ P (oi = 1 j R; di) › ෆภਪఆྔ ´IPS (f„; D; c) ͷ bound ʹ͍ͭͯඍΛܭࢉɿ „0 = r„ "– (rank (di j f„; D)) P (oi = 1 j R; di) # › ϞσϧύϥϝʔλΛߋ৽ „new „old ` „0 15
References › https://ilps.github.io/webconf2020-tutorial-unbiased-ltr/ 16