$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Counterfactual learning to rank: introduction
Search
Daiki Tanaka
May 02, 2020
Research
0
780
Counterfactual learning to rank: introduction
一般的なランキング学習からcounterfactual LTRへの導入
Daiki Tanaka
May 02, 2020
Tweet
Share
More Decks by Daiki Tanaka
See All by Daiki Tanaka
カーネル法概観
daikitanak
0
620
カーネル法:正定値カーネルの理論
daikitanak
0
68
[Paper reading] L-SHAPLEY AND C-SHAPLEY: EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA
daikitanak
1
200
[Paper Reading] Attention is All You Need
daikitanak
0
120
Interpretability of Machine Learning : Paper reading (LIME)
daikitanak
0
160
[Paper reading] Local Outlier Detection With Interpretation
daikitanak
0
69
Other Decks in Research
See All in Research
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
630
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
460
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
480
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
350
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
110
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
0
260
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
770
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
100
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
460
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
910
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
Featured
See All Featured
The Language of Interfaces
destraynor
162
25k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
260
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
0
100
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
1
210
Automating Front-end Workflow
addyosmani
1371
200k
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
0
94
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Paper Plane
katiecoart
PRO
0
44k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
30
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Transcript
Unbiased Learning to Rank May 7, 2020
Learning to rank ઃఆ Supervised LTR Pointwise loss Pairwise loss
Listtwise loss Counterfactual Learning to Rank Counterfactual Evaluation Inverse Propensity Scoring Propensity-weighted Learning to Rank 2
Learning to rank: ઃఆ ೖྗɿ จॻͷू߹ D ग़ྗɿ จॻͷॱҐ R
= (R1; R2; R3:::) ͨͩ͠ɺ֤จॻʹϞσϧ f„ ʹΑͬͯείΞ͕͍͍ͭͯͯ f„ (R1) – f„ (R2) – f„ (R3) ::: ͱͳ͍ͬͯΔɻ(ߴ͍είΞ͕͚ΒΕΔ΄ͲॱҐ͕ߴ͍) Learning to Rank (LTR) ͷత࠷దͳॱҐΛग़ྗ͢ΔϞσϧ f„ ͷύϥϝʔλ „ Λ σʔλ͔ΒٻΊΔ͜ͱɻ 3
Supervised LTR ڭࢣ͋Γ LTR Ͱɺ › ݕࡧΫΤϦ › จॻू߹ ›
ॱҐͷϥϕϧ ΛؚΉσʔληοτΛͬͯϞσϧύϥϝʔλΛٻΊΔɻ ڭࢣ͋Γ LTR Ͱ༻͍ΒΕΔଛࣦओʹ 3 ͭɿ › Pointwise loss › Pairwise loss › Listwise loss y (d) ʹΑͬͯɺจॻ d ͷݕࡧΫΤϦͷؔ࿈Λද͢ͱ͢Δɻ(େ͖͍΄ͲॱҐͷ্Ґʹ ͖ͯཉ͍͠) 4
Pointwise loss Pointwise loss ɺॱҐͷਪఆΛྨɾճؼͱͯ͠ղ͘ɻྫ͑ɺ௨ৗͷճؼଛࣦ (squared loss) ͱͯ͠ҎԼͷΑ͏ʹ༩͑Δɿ Lpointwise :=
1 N N X i=1 (f„ (di) ` y (di))2 Pointwise loss ͷɺϞσϧͷग़ྗΛॱҐͱͯ͠͏͜ͱΛߟྀʹೖΕ͍ͯͳ͍͜ ͱɻLTR Ͱग़ྗͱͯ͠ಘΒΕΔείΞΛฒͼସ͑ͯಘΒΕΔॱҐʹͷΈؔ৺͕͋Δɻ 5
Pairwise loss Pairwise loss Ͱɺ2 ͭͷจॻؒͷ૬ରతͳείΞͷେখΛߟྀʹ͍ΕΔɻྫ͑ɺҎԼ ͷΑ͏ͳ hinge-loss Λ༩͑Δʀ Lpairwise
:= X y(di)>y(dj) max (0; 1 ` (f„ (di) ` f„ (di))): ॱҐ͕૬ରతʹߴ͍จॻείΞ͕ߴ͘ɺॱҐ͕͍จॻείΞΛ͘͢Δؾ࣋ͪɻ Pairwise loss ͷɺશͯͷهࣄϖΞΛಉ༷ʹѻ͏͜ͱɻ࣮ͦͯ͠༻্ top100 ͱ top10 ޙऀͷํ͕ॏࢹ͞ΕΔ͜ͱɻPairwise loss Ͱ top100 ͷԼͷํͷॱҐΛվળ ͤ͞ΔͨΊʹ্ҐͷॱҐΛ٘ਜ਼ʹ͢Δ͜ͱ͕͋Γ͑ͯ͠·͏ɻ 6
Listwise loss Listwise loss ͰॱҐࢦඪΛ࠷దԽ͢Δɻ՝ɺॱҐࢦඪ͕ඍՄೳͰͳ͍͜ͱɻ ྫ͑ɺDCG ɿ DCG = N
X i=1 y (di) log2 (rank (di) + 1) Ͱ͋Δ͕ɺlog2 (rank (di) + 1) ඍෆՄೳͰ͋Δɻ ͦͷͨΊʹ֬తۙࣅΛ༻͍Δํ๏ (ListNetɺListMLE) ɺώϡʔϦεςΟοΫॱҐ ࢦඪͷόϯυΛ࠷దԽ͢Δख๏͕͋Δɻ(LambdaRankɺLambdaLoss) ྫ͑ɺ LambdaRank ͷଛࣦ DCG ͷόϯυͱͳ͍ͬͯΔɿ LLambdaRank := X y(di)>y(dj) log (1 + exp (f„ (dj) ` f„ (di))) j´DCGj 7
ҼՌධՁ తɿ৽͍͠ϥϯΩϯάؔ f„ ΛɺผͷϥϯΩϯάؔ fdeploy ͷԼͰूΊΒΕͨաڈ ͷσʔλ (ΫϦοΫσʔλͳͲ) ΛͬͯධՁ͍ͨ͠ɻ ҎԼͷ
2 ͭͷ߹ʹ͍ͭͯߟ͑Δɻ › શͯͷจॻʹ͍ͭͯਅͷؔ࿈ y (di) ͕طͰ͋Δ࣌ › y (di) Θ͔Βͳ͍͕ɺΫϦοΫใͳͲͷ҉తͳϑΟʔυόοΫͷΈར༻Մೳͳ࣌ 8
ҼՌධՁɿϥϕϧ͕طͳΒશʹධՁ͕Ͱ͖Δ શͯͷจॻʹ͍ͭͯਅͷϥϕϧ y (di) ͕طͰ͋Δ࣌ɺIR(ใݕࡧ) ࢦඪΛܭࢉͰ͖Δɿ ´ (f„; D; y)
= X di2D – (rank (di j f„; D)) ´ y (di) ͜͜Ͱɺ– ॱҐॏΈ͚ؔͰ͋ͬͯɺྫ͑ɿ APR: – (r) = r DCG: – (r) = 1 log2 (1+r) ͳͲ͕༻͍ΒΕΔɻ 9
ҼՌධՁ y (di) Θ͔Βͳ͍͕ɺΫϦοΫใͳͲͷ҉తͳϑΟʔυόοΫͷΈར༻Մೳͳ࣌ɿ › ͋Δจॻʹର͢ΔΫϦοΫɺͦͷจॻ͕ؔ࿈͍ͯ͠Δ͜ͱΛࣔ͢ɺόΠΞεɾϊΠζ ͖ͭͷࢦඪʹͳ͍ͬͯΔɻ › ΫϦοΫ͞Εͳ͔͔ͬͨΒͱ͍ͬͯͦͷจॻ͕ؔͳ͍Θ͚Ͱͳ͍ɻ(จॻ͕ؔͳ ͍ɾϢʔβ͕จॻΛ؍ଌ͍ͯ͠ͳ͍ɾϥϯμϜཁૉʹΑΔͷ)
ଟ͘ͷ؍ଌσʔλʹ͍ͭͯฏۉΛऔΕϊΠζআڈͰ͖Δͱߟ͑ΒΕΔ͕ɺόΠΞεআ ڈͰ͖ͳ͍ɻ 10
ҼՌධՁɿ؍ଌɾΫϦοΫϞσϧ Ϣʔβͷ؍ଌٴͼจॻͷؔ࿈ͷΈΛߟྀʹೖΕΔͱɺϢʔβͷΫϦοΫҎԼͷΑ͏ʹϞ σϦϯάͰ͖ͦ͏ɿ › ϥϯΩϯά R ʹ͓͍ͯจॻ di ͕؍ଌ͞ΕΔ (oi
= 1 Ͱද͢) ֬ɺ P (oi = 1 j R; di) (؍ଌ͞ΕΔ֬ؔ࿈ʹؔͳ͍ͱԾఆ͍ͯ͠Δɻ) › ؔ࿈ y (di) ͱ؍ଌ oi ͕༩͑ΒΕͨ࣌ͷɺจॻ di ͕ΫϦοΫ͞ΕΔ֬ (ci = 1 Ͱද͢) ɺ P (ci = 1 j oi; y (di)) › ΫϦοΫ؍ଌ͞Εͨจॻʹ͔͠ى͜Βͳ͍ͨΊɺϥϯΩϯά R ʹ͓͍ͯΫϦοΫ͞ ΕΔ֬ɿ P (ci = 1 ^ oi = 1 j y (di) ; R) = P (ci = 1 j oi = 1; y (di)) ´ P (oi = 1 j R; di) 11
ҼՌධՁɿ´ (f„; D; y) ͷφΠʔϒਪఆ ´ (f„; D; y) ΛφΠʔϒʹਪఆ͢ΔʹɺΫϦοΫͷใ
(ci) Λਅͷؔ࿈ϥϕϧ (y (di)) ͷΘΓʹ͑Αͯ͘ɺ ´NAIVE (f„; D; c) := X di2D – (rank (di j f„; D)) ´ ci ͱͳΔɻ ΫϦοΫʹϊΠζ͕͍ͬͯͳ͍࣌ɺͭ·Γ P (ci = 1 j oi = 1; y (di)) = y (di) Ͱ͋Δ࣌Ͱ͑͞ɺφΠʔϒਪఆ؍ଌόΠΞεΛड͚͍ͯΔɿ Eo ˆ´NAIVE (f„; D; c)˜ = Eo 2 4 X di2D – (rank (di j f„; D)) ´ ci 3 5 = Eo 2 6 4 X di:oi=1^y(di)=1 – (rank (di j f„; D)) 3 7 5 = X di:y(di)=1 P (oi = 1 j R; di)– (rank (di j f„; D)) = X di2D P (oi = 1 j R; di)– (rank (di j f„; D)) ´ y (di) 12
ҼՌධՁɿ´ (f„; D; y) ͷφΠʔϒਪఆ φΠʔϒਪఆɿ Eo ˆ´NAIVE (f„; D;
c)˜ = X di:y(di)=1 P (oi = 1 j R; di)– (rank (di j f„; D)) ͰɺͦΕͧΕͷจॻͷɺϩάऩू࣌ͷϥϯΩϯά R Ͱͷ؍ଌ֬ͰॏΈͨ͠ਪఆʹͳͬ ͯ͠·͏ɻ ϥϯΩϯάͰɺߴॱҐͷจॻ΄Ͳ؍ଌ͞Ε͍͢ɿ͜ΕΛ position bias ͱݺͿɻϩάऩ ूͷࡍʹߴॱҐʹදࣔ͞Εͨจॻਅͷؔ࿈ΑΓؔ࿈͕͋ΔɺͱόΠΞεΛड͚ͯ͠· ͏ɻ όΠΞεΛআڈ͢ΔͨΊʹɺP (oi = 1 j R; di) Λਪఆ͠ɺิਖ਼ͯ͋͛͠Εྑͦ͞͏ ! είΞʹΑΔόΠΞεআڈ 13
είΞΛ༻͍ͨόΠΞεআڈ Inverse Propensity Scoring(IPS) ʹΑͬͯόΠΞεΛআڈ͢Δɿ ´IPS (f„; D; c) :=
X di2D – (rank (di j f„; D)) P (oi = 1 j R; di) ´ ci ͜͜ͰɺP (oi = 1 j R; di) ϩάऩूதʹදࣔ͞ΕͨϥϯΩϯά R Ͱจॻ di ͕؍ଌ͞ ΕΔ֬Ͱ͋Δɻ´IPS (f„; D; c) ΫϦοΫϊΠζ͕ͳ͍߹ɺͭ·Γ P (ci = 1 j oi = 1; y (di)) = y (di) Ͱ͋Δ࣌ʹ ´ (f„; D; y) ͷෆภਪఆྔͰ͋Δɿ Eo ˆ´IPS (f„; D; c)˜ = Eo 2 4 X di2D – (rank (di j f„; D)) P (oi = 1 j R; di) ´ ci 3 5 = Eo 2 6 4 X di:oi=1^y(di)=1 – (rank (di j f„; D)) P (oi = 1 j R; di) 3 7 5 = X di:y(di)=1 P (oi = 1 j R; di) ´ – (rank (di j f„; D)) P (oi = 1 j R; di) = X di2D – (rank (di j f„; D)) ´ y (di) = ´ (f„; D; y) : 14
Propensity-weighted LTR IPS ´ (f„; D; y) ͷෆภਪఆͰ͋ͬͨɻΑͬͯɺ࠷దͳϞσϧύϥϝʔλ „
IPS Λ ࠷దԽ͢Δ͜ͱͰٻΊΔ͜ͱ͕Ͱ͖ΔɻIPS Λ࠷దԽ͢ΔࡍɺϥϯΩϯάࢦඪ – (r) ͷඍ ෆՄೳੑʹରॲ͢ΔͨΊɺ– (r) ͷ bound Λར༻͢Δɻ Propensity-weighted LTR ͷྲྀΕɿ › ΫϦοΫͷείΞΛਪఆɿ P (oi = 1 j R; di) › ෆภਪఆྔ ´IPS (f„; D; c) ͷ bound ʹ͍ͭͯඍΛܭࢉɿ „0 = r„ "– (rank (di j f„; D)) P (oi = 1 j R; di) # › ϞσϧύϥϝʔλΛߋ৽ „new „old ` „0 15
References › https://ilps.github.io/webconf2020-tutorial-unbiased-ltr/ 16