Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Counterfactual learning to rank: introduction
Search
Daiki Tanaka
May 02, 2020
Research
0
790
Counterfactual learning to rank: introduction
一般的なランキング学習からcounterfactual LTRへの導入
Daiki Tanaka
May 02, 2020
Tweet
Share
More Decks by Daiki Tanaka
See All by Daiki Tanaka
カーネル法概観
daikitanak
0
640
カーネル法:正定値カーネルの理論
daikitanak
0
69
[Paper reading] L-SHAPLEY AND C-SHAPLEY: EFFICIENT MODEL INTERPRETATION FOR STRUCTURED DATA
daikitanak
1
200
[Paper Reading] Attention is All You Need
daikitanak
0
130
Interpretability of Machine Learning : Paper reading (LIME)
daikitanak
0
160
[Paper reading] Local Outlier Detection With Interpretation
daikitanak
0
70
Other Decks in Research
See All in Research
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
930
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
240
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
【SIGGRAPH Asia 2025】Lo-Fi Photograph with Lo-Fi Communication
toremolo72
0
120
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.3k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
750
OWASP KansaiDAY 2025.09_文系OSINTハンズオン
owaspkansai
0
110
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
630
2026.01ウェビナー資料
elith
0
220
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
220
Featured
See All Featured
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
Unsuck your backbone
ammeep
671
58k
AI: The stuff that nobody shows you
jnunemaker
PRO
2
270
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
It's Worth the Effort
3n
188
29k
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
120
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
67
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
86
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
190
Transcript
Unbiased Learning to Rank May 7, 2020
Learning to rank ઃఆ Supervised LTR Pointwise loss Pairwise loss
Listtwise loss Counterfactual Learning to Rank Counterfactual Evaluation Inverse Propensity Scoring Propensity-weighted Learning to Rank 2
Learning to rank: ઃఆ ೖྗɿ จॻͷू߹ D ग़ྗɿ จॻͷॱҐ R
= (R1; R2; R3:::) ͨͩ͠ɺ֤จॻʹϞσϧ f„ ʹΑͬͯείΞ͕͍͍ͭͯͯ f„ (R1) – f„ (R2) – f„ (R3) ::: ͱͳ͍ͬͯΔɻ(ߴ͍είΞ͕͚ΒΕΔ΄ͲॱҐ͕ߴ͍) Learning to Rank (LTR) ͷత࠷దͳॱҐΛग़ྗ͢ΔϞσϧ f„ ͷύϥϝʔλ „ Λ σʔλ͔ΒٻΊΔ͜ͱɻ 3
Supervised LTR ڭࢣ͋Γ LTR Ͱɺ › ݕࡧΫΤϦ › จॻू߹ ›
ॱҐͷϥϕϧ ΛؚΉσʔληοτΛͬͯϞσϧύϥϝʔλΛٻΊΔɻ ڭࢣ͋Γ LTR Ͱ༻͍ΒΕΔଛࣦओʹ 3 ͭɿ › Pointwise loss › Pairwise loss › Listwise loss y (d) ʹΑͬͯɺจॻ d ͷݕࡧΫΤϦͷؔ࿈Λද͢ͱ͢Δɻ(େ͖͍΄ͲॱҐͷ্Ґʹ ͖ͯཉ͍͠) 4
Pointwise loss Pointwise loss ɺॱҐͷਪఆΛྨɾճؼͱͯ͠ղ͘ɻྫ͑ɺ௨ৗͷճؼଛࣦ (squared loss) ͱͯ͠ҎԼͷΑ͏ʹ༩͑Δɿ Lpointwise :=
1 N N X i=1 (f„ (di) ` y (di))2 Pointwise loss ͷɺϞσϧͷग़ྗΛॱҐͱͯ͠͏͜ͱΛߟྀʹೖΕ͍ͯͳ͍͜ ͱɻLTR Ͱग़ྗͱͯ͠ಘΒΕΔείΞΛฒͼସ͑ͯಘΒΕΔॱҐʹͷΈؔ৺͕͋Δɻ 5
Pairwise loss Pairwise loss Ͱɺ2 ͭͷจॻؒͷ૬ରతͳείΞͷେখΛߟྀʹ͍ΕΔɻྫ͑ɺҎԼ ͷΑ͏ͳ hinge-loss Λ༩͑Δʀ Lpairwise
:= X y(di)>y(dj) max (0; 1 ` (f„ (di) ` f„ (di))): ॱҐ͕૬ରతʹߴ͍จॻείΞ͕ߴ͘ɺॱҐ͕͍จॻείΞΛ͘͢Δؾ࣋ͪɻ Pairwise loss ͷɺશͯͷهࣄϖΞΛಉ༷ʹѻ͏͜ͱɻ࣮ͦͯ͠༻্ top100 ͱ top10 ޙऀͷํ͕ॏࢹ͞ΕΔ͜ͱɻPairwise loss Ͱ top100 ͷԼͷํͷॱҐΛվળ ͤ͞ΔͨΊʹ্ҐͷॱҐΛ٘ਜ਼ʹ͢Δ͜ͱ͕͋Γ͑ͯ͠·͏ɻ 6
Listwise loss Listwise loss ͰॱҐࢦඪΛ࠷దԽ͢Δɻ՝ɺॱҐࢦඪ͕ඍՄೳͰͳ͍͜ͱɻ ྫ͑ɺDCG ɿ DCG = N
X i=1 y (di) log2 (rank (di) + 1) Ͱ͋Δ͕ɺlog2 (rank (di) + 1) ඍෆՄೳͰ͋Δɻ ͦͷͨΊʹ֬తۙࣅΛ༻͍Δํ๏ (ListNetɺListMLE) ɺώϡʔϦεςΟοΫॱҐ ࢦඪͷόϯυΛ࠷దԽ͢Δख๏͕͋Δɻ(LambdaRankɺLambdaLoss) ྫ͑ɺ LambdaRank ͷଛࣦ DCG ͷόϯυͱͳ͍ͬͯΔɿ LLambdaRank := X y(di)>y(dj) log (1 + exp (f„ (dj) ` f„ (di))) j´DCGj 7
ҼՌධՁ తɿ৽͍͠ϥϯΩϯάؔ f„ ΛɺผͷϥϯΩϯάؔ fdeploy ͷԼͰूΊΒΕͨաڈ ͷσʔλ (ΫϦοΫσʔλͳͲ) ΛͬͯධՁ͍ͨ͠ɻ ҎԼͷ
2 ͭͷ߹ʹ͍ͭͯߟ͑Δɻ › શͯͷจॻʹ͍ͭͯਅͷؔ࿈ y (di) ͕طͰ͋Δ࣌ › y (di) Θ͔Βͳ͍͕ɺΫϦοΫใͳͲͷ҉తͳϑΟʔυόοΫͷΈར༻Մೳͳ࣌ 8
ҼՌධՁɿϥϕϧ͕طͳΒશʹධՁ͕Ͱ͖Δ શͯͷจॻʹ͍ͭͯਅͷϥϕϧ y (di) ͕طͰ͋Δ࣌ɺIR(ใݕࡧ) ࢦඪΛܭࢉͰ͖Δɿ ´ (f„; D; y)
= X di2D – (rank (di j f„; D)) ´ y (di) ͜͜Ͱɺ– ॱҐॏΈ͚ؔͰ͋ͬͯɺྫ͑ɿ APR: – (r) = r DCG: – (r) = 1 log2 (1+r) ͳͲ͕༻͍ΒΕΔɻ 9
ҼՌධՁ y (di) Θ͔Βͳ͍͕ɺΫϦοΫใͳͲͷ҉తͳϑΟʔυόοΫͷΈར༻Մೳͳ࣌ɿ › ͋Δจॻʹର͢ΔΫϦοΫɺͦͷจॻ͕ؔ࿈͍ͯ͠Δ͜ͱΛࣔ͢ɺόΠΞεɾϊΠζ ͖ͭͷࢦඪʹͳ͍ͬͯΔɻ › ΫϦοΫ͞Εͳ͔͔ͬͨΒͱ͍ͬͯͦͷจॻ͕ؔͳ͍Θ͚Ͱͳ͍ɻ(จॻ͕ؔͳ ͍ɾϢʔβ͕จॻΛ؍ଌ͍ͯ͠ͳ͍ɾϥϯμϜཁૉʹΑΔͷ)
ଟ͘ͷ؍ଌσʔλʹ͍ͭͯฏۉΛऔΕϊΠζআڈͰ͖Δͱߟ͑ΒΕΔ͕ɺόΠΞεআ ڈͰ͖ͳ͍ɻ 10
ҼՌධՁɿ؍ଌɾΫϦοΫϞσϧ Ϣʔβͷ؍ଌٴͼจॻͷؔ࿈ͷΈΛߟྀʹೖΕΔͱɺϢʔβͷΫϦοΫҎԼͷΑ͏ʹϞ σϦϯάͰ͖ͦ͏ɿ › ϥϯΩϯά R ʹ͓͍ͯจॻ di ͕؍ଌ͞ΕΔ (oi
= 1 Ͱද͢) ֬ɺ P (oi = 1 j R; di) (؍ଌ͞ΕΔ֬ؔ࿈ʹؔͳ͍ͱԾఆ͍ͯ͠Δɻ) › ؔ࿈ y (di) ͱ؍ଌ oi ͕༩͑ΒΕͨ࣌ͷɺจॻ di ͕ΫϦοΫ͞ΕΔ֬ (ci = 1 Ͱද͢) ɺ P (ci = 1 j oi; y (di)) › ΫϦοΫ؍ଌ͞Εͨจॻʹ͔͠ى͜Βͳ͍ͨΊɺϥϯΩϯά R ʹ͓͍ͯΫϦοΫ͞ ΕΔ֬ɿ P (ci = 1 ^ oi = 1 j y (di) ; R) = P (ci = 1 j oi = 1; y (di)) ´ P (oi = 1 j R; di) 11
ҼՌධՁɿ´ (f„; D; y) ͷφΠʔϒਪఆ ´ (f„; D; y) ΛφΠʔϒʹਪఆ͢ΔʹɺΫϦοΫͷใ
(ci) Λਅͷؔ࿈ϥϕϧ (y (di)) ͷΘΓʹ͑Αͯ͘ɺ ´NAIVE (f„; D; c) := X di2D – (rank (di j f„; D)) ´ ci ͱͳΔɻ ΫϦοΫʹϊΠζ͕͍ͬͯͳ͍࣌ɺͭ·Γ P (ci = 1 j oi = 1; y (di)) = y (di) Ͱ͋Δ࣌Ͱ͑͞ɺφΠʔϒਪఆ؍ଌόΠΞεΛड͚͍ͯΔɿ Eo ˆ´NAIVE (f„; D; c)˜ = Eo 2 4 X di2D – (rank (di j f„; D)) ´ ci 3 5 = Eo 2 6 4 X di:oi=1^y(di)=1 – (rank (di j f„; D)) 3 7 5 = X di:y(di)=1 P (oi = 1 j R; di)– (rank (di j f„; D)) = X di2D P (oi = 1 j R; di)– (rank (di j f„; D)) ´ y (di) 12
ҼՌධՁɿ´ (f„; D; y) ͷφΠʔϒਪఆ φΠʔϒਪఆɿ Eo ˆ´NAIVE (f„; D;
c)˜ = X di:y(di)=1 P (oi = 1 j R; di)– (rank (di j f„; D)) ͰɺͦΕͧΕͷจॻͷɺϩάऩू࣌ͷϥϯΩϯά R Ͱͷ؍ଌ֬ͰॏΈͨ͠ਪఆʹͳͬ ͯ͠·͏ɻ ϥϯΩϯάͰɺߴॱҐͷจॻ΄Ͳ؍ଌ͞Ε͍͢ɿ͜ΕΛ position bias ͱݺͿɻϩάऩ ूͷࡍʹߴॱҐʹදࣔ͞Εͨจॻਅͷؔ࿈ΑΓؔ࿈͕͋ΔɺͱόΠΞεΛड͚ͯ͠· ͏ɻ όΠΞεΛআڈ͢ΔͨΊʹɺP (oi = 1 j R; di) Λਪఆ͠ɺิਖ਼ͯ͋͛͠Εྑͦ͞͏ ! είΞʹΑΔόΠΞεআڈ 13
είΞΛ༻͍ͨόΠΞεআڈ Inverse Propensity Scoring(IPS) ʹΑͬͯόΠΞεΛআڈ͢Δɿ ´IPS (f„; D; c) :=
X di2D – (rank (di j f„; D)) P (oi = 1 j R; di) ´ ci ͜͜ͰɺP (oi = 1 j R; di) ϩάऩूதʹදࣔ͞ΕͨϥϯΩϯά R Ͱจॻ di ͕؍ଌ͞ ΕΔ֬Ͱ͋Δɻ´IPS (f„; D; c) ΫϦοΫϊΠζ͕ͳ͍߹ɺͭ·Γ P (ci = 1 j oi = 1; y (di)) = y (di) Ͱ͋Δ࣌ʹ ´ (f„; D; y) ͷෆภਪఆྔͰ͋Δɿ Eo ˆ´IPS (f„; D; c)˜ = Eo 2 4 X di2D – (rank (di j f„; D)) P (oi = 1 j R; di) ´ ci 3 5 = Eo 2 6 4 X di:oi=1^y(di)=1 – (rank (di j f„; D)) P (oi = 1 j R; di) 3 7 5 = X di:y(di)=1 P (oi = 1 j R; di) ´ – (rank (di j f„; D)) P (oi = 1 j R; di) = X di2D – (rank (di j f„; D)) ´ y (di) = ´ (f„; D; y) : 14
Propensity-weighted LTR IPS ´ (f„; D; y) ͷෆภਪఆͰ͋ͬͨɻΑͬͯɺ࠷దͳϞσϧύϥϝʔλ „
IPS Λ ࠷దԽ͢Δ͜ͱͰٻΊΔ͜ͱ͕Ͱ͖ΔɻIPS Λ࠷దԽ͢ΔࡍɺϥϯΩϯάࢦඪ – (r) ͷඍ ෆՄೳੑʹରॲ͢ΔͨΊɺ– (r) ͷ bound Λར༻͢Δɻ Propensity-weighted LTR ͷྲྀΕɿ › ΫϦοΫͷείΞΛਪఆɿ P (oi = 1 j R; di) › ෆภਪఆྔ ´IPS (f„; D; c) ͷ bound ʹ͍ͭͯඍΛܭࢉɿ „0 = r„ "– (rank (di j f„; D)) P (oi = 1 j R; di) # › ϞσϧύϥϝʔλΛߋ৽ „new „old ` „0 15
References › https://ilps.github.io/webconf2020-tutorial-unbiased-ltr/ 16