Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
インターネット、スマートフォン。 10年ごとの新技術。 そして今我々はいかにして 機械学習プロ...
Search
KASUYA, Daisuke
June 22, 2019
Programming
4
9.2k
インターネット、スマートフォン。 10年ごとの新技術。 そして今我々はいかにして 機械学習プロジェクトを マネージメントしていくべきか。/ DevLOVEX
KASUYA, Daisuke
June 22, 2019
Tweet
Share
More Decks by KASUYA, Daisuke
See All by KASUYA, Daisuke
エンジニアリングマネージャーの成長の道筋とキャリア / Developers Summit 2025 KANSAI
daiksy
7
4.7k
はてなの開発20年史と DevOpsの歩み / DevOpsDays Tokyo 2025 Keynote
daiksy
6
3.5k
わたしがEMとして入社した「最初の100日」の過ごし方 / EMConfJp2025
daiksy
22
13k
はてなのチーム開発一巡り / Hatena Engineer Seminar 30
daiksy
0
850
ふりかえりカンファレンスLT/Get Wild
daiksy
0
2k
スクラムマスターの採用事情 / scrum fest fukuoka 2023
daiksy
1
2.9k
スクラムのスケールとチームトポロジー / Scaled Scrum and Team Topologies
daiksy
1
1.5k
Scrum@Scaleの理論と実装 / RSGT2022
daiksy
2
11k
リモートワークに最適なスクラムチームの人数についての仮説 / Kyoto Agile 2021
daiksy
0
290
Other Decks in Programming
See All in Programming
Data-Centric Kaggle
isax1015
2
560
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
170
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.5k
[AI Engineering Summit Tokyo 2025] LLMは計画業務のゲームチェンジャーか? 最適化業務における活⽤の可能性と限界
terryu16
2
340
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
170
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
500
Grafana:建立系統全知視角的捷徑
blueswen
0
290
コントリビューターによるDenoのすゝめ / Deno Recommendations by a Contributor
petamoriken
0
160
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
7
4.4k
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
180
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
5.4k
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
250
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
120
Navigating Weather and Climate Data
rabernat
0
72
Color Theory Basics | Prateek | Gurzu
gurzu
0
180
Thoughts on Productivity
jonyablonski
74
5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
110
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
36
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.5k
Designing for Timeless Needs
cassininazir
0
120
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
43
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
300
Transcript
ΠϯλʔωοτɺεϚʔτϑΥϯɻ ͝ͱͷ৽ٕज़ɻ ͦͯ͠ࠓզʑ͍͔ʹͯ͠ ػցֶशϓϩδΣΫτΛ Ϛωʔδϝϯτ͍͖͔ͯ͘͠ɻ %FW-07&9 גࣜձࣾͯͳcപ୩େี JEEBJLTZ
ࣗݾհ w പ୩େี JEEBJLTZ!EBJLTZ w גࣜձࣾͯͳ.BDLFSFMνʔϜσΟϨΫλʔ w גࣜձࣾτϚϧόΤϯδχΞ৫։ൃࢧԉ w
$IBUXPSLגࣜձࣾݱϚωʔδϟࢧԉ w ೝఆεΫϥϜϚελʔ
None
None
%FW-07& ͓ΊͰͱ͏͍͟͝·͢ʂ
ੜ·Εͯ͡Ίͯͷ-5 ݄ ΄΅
%FW-07&ؔ ॳొஃ ݄
None
ུྺ w େֶଔۀޙ৽ଔೖࣾ4&4ɻ w ࠷ॳͷస৬ɻ4&4ɻͰ࢈ɻ w ͷస৬ɻৗறઌʹरΘΕΔɻडୗ։ൃɻ w ͷస৬ɻιʔγϟϧήʔϜ։ൃɻ w
ͷస৬ɻݱ৬ɻ w ۀքྺɻ%FW-07&ճɻ
৽ଔೖࣾ࣌ લ w ब৬ණՏظ w ৬ۀϓϩάϥϚσϏϡʔ$0#0- w ௨ۈ͔ΜͷதʹϑϩοϐʔσΟεΫຕ͘Β͍ೖͬͯ ͨʢதςΩετΤσΟλͳͲͷศརπʔϧʣ w
+BWBͷҊ͕݅૿͑࢝Ίͨͷ͜ͷ͘Β͍͔Βʁ
৽ଔೖࣾ࣌ લ w େֶੜͷͱ͖ʹܞଳిɻੈͷதతʹ1)4͕ओྲྀʁ w εϚϑΥӨܗଘࡏ͠ͳ͔ͬͨɻ w ΠϯλʔωοτΛੜۀΛ͍ͯ͠ΔΤϯδχΞͨͿΜগ ɻ w
झຯͰϨϯλϧαʔόʔΛआΓͯʮϗʔϜϖʔδʯ࡞ͬͯ ͨɻѨ෦ͷͭΈ͍ͨͳͷɻ
લ w ιʔγϟϧήʔϜ։ൃ w ͜ͷࠒ·ͩϑΟʔνϟʔϑΥϯʢΨϥέʔʣओྲྀ w ͦΖͦΖεϚϑΥରԠ͍ͨ͠Ͷͱ͔ݴͬͯͨ w ͦͷޙ͘Β͍ͰεϚϑΥ͕ओྲྀʹʢҰॠͩͬͨʣ
લ w ΠϯλʔωοτΛੜۀʹ͢ΔͷׂͱͨΓલɻۀΞ ϓϦ8FCϒϥβͰಈ͘ɻ w ˢ৽ଔͷࠒ༡ͼΈ͍ͨͳײͩͬͨ͡ͷʹͶ w εϚϑΥΞϓϦΤϯδχΞͱ͍͏৽͍͠৬छ w
ˢ৽ଔͷࠒʹ૾Ͱ͖ͳ͔ͬͨ৬छͰ͢Ͷ
ݱ w 4BB4αʔϏεͷσΟϨΫλʔ w ػցֶशϓϩδΣΫτͷϚωʔδϝϯτΔ w ˢιʔγϟϧήʔϜ࣌ʹࣄͰ͜Μͳ͜ͱͬͯΔͱ ૾ͯ͠ͳ͔ͬͨ
ະདྷ w ޙɻɻ ࡀ w ޙɻɻ ࡀ w
ఆ͕ࡀͱԾఆʢͨͿΜࡀͱ͔ʹͳͬͯͦ͏͚ͩͲ w ͋ͱ ճࣄͷݱʹະͷٕज़͕ొͦ͠͏
ະདྷ w ྔࢠίϯϐϡʔλʔ w ʮ͍ͩ͘͠ʔ͞Μɻ·ͩϊΠϚϯܕίϯϐϡʔλͳΜͯ ৮ͬͯΔΜͰ͔͢ʁΫεΫεʯ
ͭΒ͘ͳ͖ͬͯͨʜ
͜͜ͰλΠτϧ
ΠϯλʔωοτɺεϚʔτϑΥϯɻ ͝ͱͷ৽ٕज़ɻ ͦͯ͠ࠓզʑ͍͔ʹͯ͠ ػցֶशϓϩδΣΫτΛ Ϛωʔδϝϯτ͍͖͔ͯ͘͠ɻ
Πϯλʔωοτ εϚʔτϑΥϯ ػցֶश ͜Ε·Ͱͷ ͳΜͱ͔ͳ͖ͬͯͨ
͜ͷௐࢠͰΓͷ ͳΜͱ͔ ͍͖ͬͯ·͠ΐ͏
ػցֶशͷ Ϛωʔδϝϯτ
.BDLFSFMͷ ϩʔϧҟৗݕ
None
None
ػցֶशΛͬͨ։ൃ ͡Ίͯͷܦݧ
ԿΘ͔Βͳ͍ͷͰ ษڧͯ͠ΈΔ ͨ·ͨ·ਖ਼݄ٳΈͷ࣌ظͩͬͨ
None
None
None
https://github.com/hatena/Hatena-Textbook
ػցֶशϚωʔδϝϯτ ͷϙΠϯτ
ෆ࣮֬ੑͷଊ͑ํ
https://tech.nikkeibp.co.jp/it/article/COLUMN/20131001/508039/
ҰൠతͳιϑτΤΞ։ൃ ޙఔʹ͍͘ʹͭΕͯ ࣮֬ੑ͕૿͢
ػցֶशϓϩδΣΫτ ऴ൫ʹ͏Ұࢁ͕๚ΕΔ
ςετఔͰͷ ࢼߦࡨޡ
.BDLFSFMͷ߹
։ൃॳظ w ࣾͷোࣄྫΛऩू w ͞·͟·ͳΞϧΰϦζϜΛͯΊͯϓϩτλΠϓ࣮ w қܭࢉྔͷഽײ֮Λ͑Δ w ͍ΘΏΔ1P$ 1SPPGPG$PODFQU
ͱݺΕΔϑΣʔζ
։ൃॳظ w ΞϧΰϦζϜͷબఆ݅ w ݁Ռʹରͯ͠આ໌ՄೳͰ͋Δ͜ͱ w ػցֶशͷઐՈҎ֎ʹཧղ͕༰қͰ͋Δ͜ͱ
https://www.slideshare.net/syou6162/mackerel-108429592
։ൃऴ൫
։ൃऴ൫ w ޡݕͱͷઓ͍ w හײ͗ͯ͢ҟৗͰͳ͍ͷʹݕ͞ΕΔ w ಷײ͗ͯ͢ҟৗΛݕ͠ͳ͍ w ਓؒͷײͱҰக͢ΔΑ͏ʹνϡʔχϯά
͜͏͍ͬͨಛੑʹ ରͯ͠զʑͲ͏ରॲ͢Ε Α͍ͷ͔ʁ
CRIPS-DM(CRoss-Industry Standard Process for Data Mining) https://dev.classmethod.jp/business/business-analytics/data-analysis-crisp-dm/
ΞδϟΠϧ։ൃ • “The New New Product Development Game” (1986, தҮ࣍)
◦ ৽։ൃͷϓϩδΣΫτཧʹ͍ͭͯͷจ ◦ ͜ͷจʹΠϯεύΠΞ͞ΕͯɺδΣϑɾαβʔϥϯυ͕εΫϥϜ ΛମܥԽ ◦ ۃΊͯෆ࣮֬ੑͷߴ͍։ൃϓϩδΣΫτΛཧ͢ΔͨΊͷख๏͕େ ݩͷग़ࣗ
ήʔϜ։ൃ • ͓͠Ζ͞Λٻ͢ΔࢼߦࡨޡػցֶशͷνϡʔχϯάͷఔͱΑ ͘ࣅ͍ͯΔ • ఆྔతͳ࣭ࢦඪͱਓؒͷײͱͷόϥϯγϯά • CEDECͳͲͰࣄྫ͕දʹग़͖ͯͭͭ͋Δ
৽͍͠ύϥμΠϜͷ ಛΛଊ͑Δֶश
طଘͷzਓྨͷӥஐzΛ ୳Δ
ֶशͷతͱ ֶशൣғͷղ૾
ؔܕݴޠͷֶश ϓϩάϥϚͱͯ͠
ػցֶशͷֶश Ϛωʔδϟͱͯ͠
৽͍͠ύϥμΠϜ νϟϯε
ઌߦऀརӹ
ݱࡏͷඪ ػցֶशϚωʔδϝϯτͷ ݟΛମܥԽͯ͠ ػցֶशֶͷͰߩݙͰ͖ͳ͍͔
https://speakerdeck.com/twada/understanding-the-spiral-of-technologies?slide=10 ٕज़બఆͷ৹ඒ؟6OEFSTUBOEJOHUIF4QJSBMPG5FDIOPMPHJFTc!U@XBEB
ࣗͷಘҙͱ ৽͍͠ύϥμΠϜΛ Έ߹ΘͤΔ
w͋ͱ͘Β͍ͳΜͱ͔Εͦ͏ͳ ؾ͕͢Δ
·ͱΊ w ΤϯδχΞਓੜͰճඞͣʮੈքͷେมԽʯ͕ى͖Δ w ֶशͷղ૾ͱࣗͷཱΛ͏·͘߹ΘͤΔ w ࣗͷಘҙͷ্ʹ৽͍͠มԽΛੵΈ্͛Δ w աڈͷਓྨͷӥஐΛ৴͡Δ