Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G検定 傾向と対策
Search
h-fkn
August 01, 2018
Technology
0
36
G検定 傾向と対策
2018年G検定に合格した時の勉強したことあれこれ
h-fkn
August 01, 2018
Tweet
Share
More Decks by h-fkn
See All by h-fkn
The advantages and disadvantages of using machine learning with enebular
fkn0839
0
220
ラズパイで写真を撮った話_IoTLT_vol.66_2200812.pdf
fkn0839
0
330
俺のNETFLIX season2 AmazonPersonalize
fkn0839
0
350
俺のNETFLIX season1
fkn0839
0
200
ゆるふわマシーンラーニング#2_内容調整中()
fkn0839
0
230
ゆるふわマシーンラーニング「❝ Google AutoML Tablesでお手軽AI ❞と題して話すつもりだったけど、実際に使ったらお手軽()だった件について5分以内で話す」
fkn0839
1
4k
データ分析プロセス/AIアプリケーションの基本設計
fkn0839
0
160
DataScienceBOOTCAMP5th_part1
fkn0839
0
1.8k
G'SACADEMY LAB5th DataScience
fkn0839
0
170
Other Decks in Technology
See All in Technology
AWS SAW を広めたい @四国クラウドお遍路
kazzpapa3
0
130
エンジニア視点で見る、 組織で運用されるデザインシステムにするには
shunya078
1
250
LLMに日本語テキストを学習させる意義
ksaito
13
3.5k
LLM を現場で評価する
asei
4
680
リクルート新人研修2024 テキスト生成AI活用
recruitengineers
PRO
10
440
脆弱星に導かれて
nishimunea
1
1.5k
実践的なバグバウンティ入門
scgajge12
4
2.2k
Azure SQL Database Hyperscale HA レプリカの監視
sansantech
PRO
0
200
ビジネスとエンジニアリングを繋ぐプロダクトを中心とした組織づくりの実践
sansantech
PRO
1
110
Zero Data Loss Autonomous Recovery Service サービス概要
oracle4engineer
PRO
0
3.2k
疎通2024
sadnessojisan
5
770
APIのドキュメント化何使ってますか?
miu_crescent
2
160
Featured
See All Featured
Become a Pro
speakerdeck
PRO
22
4.9k
Designing Experiences People Love
moore
138
23k
A better future with KSS
kneath
235
17k
GraphQLとの向き合い方2022年版
quramy
43
13k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
502
140k
Raft: Consensus for Rubyists
vanstee
135
6.5k
Pencils Down: Stop Designing & Start Developing
hursman
118
11k
Principles of Awesome APIs and How to Build Them.
keavy
125
16k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
325
21k
Practical Orchestrator
shlominoach
185
10k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
32k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
34
1.9k
Transcript
1ZUIPO HVJME)*%&'6,"/0 σʔλαΠΤϯεೖγϦʔζ ͱ ରࡦ +%-"%FFQ-FBSOJOHGPS(&/&3"-
ࣗݾհ ਂ ࢚ ʢ)JEF'VLBOPʣ !IJEFGLO ܦӦίϯαϧ ʢ`dʣ (`T"$"%&.: EFWظ 4UBSUVQ-FBEFSTIJQ1SPHSBN
ˠୀ৬ ϑϩϯτΤϯυΤϯδχΞ ʢ`dʣ %BUB4DJFODF#005$".1 ظ σʔλαΠΤϯςΟετ ݸਓࣄۀओ ʢ`dʣ ઃཱొه %456%*0 ཧࣄ
ࣗݾհ ਂ ࢚ ʢ)JEF'VLBOPʣ !IJEFGLO ܦӦίϯαϧ ʢ`dʣ (`T"$"%&.: EFWظ 4UBSUVQ-FBEFSTIJQ1SPHSBN
ϑϩϯτΤϯυΤϯδχΞ ʢ`dʣ %BUB4DJFODF#005$".1 ظ σʔλαΠΤϯςΟετ ݸਓࣄۀओ ʢ`dʣ ઃཱొه %456%*0 ཧࣄ
ܦӦίϯαϧ ʢ`dʣ (`T"$"%&.: EFWظ 4UBSUVQ-FBEFSTIJQ1SPHSBN ϑϩϯτΤϯυΤϯδχΞ ʢ`dʣ %BUB4DJFODF#005$".1 ظ
σʔλαΠΤϯςΟετ ݸਓࣄۀओ ʢ`dʣ ઃཱొه %456%*0 ཧࣄ ࣗݾհ ਂ ࢚ ʢ)JEF'VLBOPʣ !IJEFGLO ϓϩάϥϛϯά σʔλαΠΤϯε
+%-"ͬͯͬͯ·͔͢ʁ ը૾Ҿ༻ݩ63-IUUQXXXKEMBPSH
+%-"ͱ Ұൠࣾஂ๏ਓ ຊσΟʔϓϥʔχϯάڠձ +BQBO%FFQ-FBSOJOH"TTPDJBUJPO ຊڠձɺσΟʔϓϥʔχϯάΛத৺ͱ͢Δٕज़ʹΑΔຊͷ࢈ۀ ڝ૪ྗͷ্Λࢦ͠·͢ɻ ը૾Ҿ༻ݩ63-IUUQXXXKEMBPSH
ࢼݧ֓ཁ •తɿσΟʔϓϥʔχϯάʹؔ͢ΔࣝΛ༗͠ɺࣄۀ׆༻͢Δਓࡐ δΣωϥϦετ ͷҭ •֓ཁɿσΟʔϓϥʔχϯάΛࣄۀʹ׆͔ͨ͢ΊͷࣝΛ༗͍ͯ͠Δ ͔Λݕఆ͢Δ •ࢼݧ֓ཁɿɺ දࣔ͞ΕΔ ɺଟࢶબ ࣜɺΦϯϥΠϯडݧ
ࣗडݧ •डݧྉɿ ԁ ੫ࠐ
डݧ͠Α͏ͱࢥ͖͔͚ͬͨͬ Ͳͷ͘Β͍ͷ࣮ܦݧ͋Δͷʁ ʜࠓ͔ΒͰ͢
डݧ͠Α͏ͱࢥ͖͔͚ͬͨͬ େֶӃͰ౷ܭΛษڧͯͨ͠ͷʁ ʜͯ͠·ͤΜ
डݧ͠Α͏ͱࢥ͖͔͚ͬͨͬ ͍ͬͯ͏͔ɺए͍ΑͶʁେৎʁ ʜʢͦΕؔͳ͘Ͷʁʣ
None
None
डݧͷಈػ·ͱΊ σʔλੳ "*ΞϧΰϦζϜ։ൃۀΛߦ͏্Ͱɺ٬؍తͳεΩϧηοτΛ ༻ҙ͢Δ͜ͱʹΑͬͯɺΫϥΠΞϯτاۀʹ৴པͯ͠Β͍͍ͨ ΤϯδχΞϦϯάεΩϧ͕ڧ͍σʔλαΠΤϯςΟετͱࠩผԽΛ͔Δͱ ͯ͠ɺࣝϨϕϧҰఆͷ࣭Λ୲อ͔ͨͬͨ͠ ࠷ۙʹͳͬͯɺਓࡐͷूஂࣗମগͳ͍ͷʹ͔͔ΘΒͣɺҭ͢Δε
λϯεͷ͋Δاۀগͳ͘ɺ࣮Ҏ֎ͷ৴པͷ୲อΛ֫ಘ͍ͨ͠ डݧ͢Δ͔ʜ
߹֨ͨ݁͠Ռʜ
߹֨ͯ͠Α͔ͬͨ͜ͱ ࢲड͚Α͏ͱࢥͬͯͨΜͰ͢Αʂ ք۾ͷਓͱձͷ͖͔͚ͬʹͳΔ
߹֨ͯ͠Α͔ͬͨ͜ͱ ख๏બͷࠜڌʹࣗ৴͕࣋ͯΔΑ͏ʹͳͬͨ Ϟσϧߏங·ͰͷϓϩηεΛ಄ͷதͰඳ͚Δ Α͏ʹͳͬͨʢੳͷਐΊํͷޮԽʣ αʔϏε։ൃʹ͓͍ͯɺ%#ઃܭΛਫ਼៛ʹߟ ͑ΒΕΔΑ͏ʹͳͬͨ
࣮ͱݕఆͱͷڑײʹ͍ͭͯࢥ͏͜ͱ ͋͘·Ͱࣝͷཧͱͯ͠༗༻ ࣮ྗͷ୲อͳΒ&ݕఆ˞ʢͱ͍͑ʜ %FFQ-FBSOJOHΛ͏1+ʹग़ձ͑Δڥʹ͍Δ͔ ੳࢹͰ·ͣઆ໌ੑͷߴ͍ख๏͕Φεεϝ
ੳͱ࣮ʹࣗ৴͕ͭ͘͜ͱ͚ͩͰे͔
1ZUIPO HVJME)*%&'6,"/0 σʔλαΠΤϯεೖγϦʔζ ͱ ରࡦ +%-"%FFQ-FBSOJOHGPS(&/&3"- ͜Ε͚ͩ(ݕఆ
ҙࣄ߲ͱલఏ ͋͘·ͰؒͰ߹֨͢ΔͨΊͷख๏ %-ͷຊ࣭Λֶͼ͍ͨͳΒদඌݚ(0ʂ ؔͷҙຯཧղͰ͖Δ ࣮ྗผ
গ͠ػցֶशʹ৮Εͨ͜ͱ͕͋Δ
ग़େ͖͚ͯͭ͘ ᶃਓೳʢ"*ʣجૅࣝ ᶄػցֶशͷੳख๏ ᶅσΟʔϓϥʔχϯά ɾ։ൃͷͨΊͷεϖοΫ ɾ$//ͱ3// ɾཱ֬·Ͱͷྺ࢙ ɾࣾձ࣮
ֶश͢Δॱং͜͏ʂ ਓೳʢ"*ʣجૅࣝ ػցֶशͷੳख๏ σΟʔϓϥʔχϯά ɾ։ൃͷͨΊͷεϖοΫ ɾ$//ͱ3// ɾཱ֬·Ͱͷྺ࢙ ɾࣾձ࣮ ᶃ ᶄ
ᶅ
ͬͺΓ%FFQ-FBSOJOHख๏ͷҰͭͰ͔͠ͳ͍ ਓೳ ػցֶश ఆྔԽ͍ͨ͠ ਓؒͷػೳ ˠ ը૾ೝࣝ ࣖ ˠ
Իೝࣝ ޱ ˠ ࣗવݴޠॲཧ ײ֮ͷఆྔԽʹ͓͍ͯ ৮֮ɾຯ֮ɾᄿ֮ɾମੑײ֮ݚڀதʁ ͱʹ͔͘ૉਓ͕͙͢ʹ࣮Ͱ͖ͳ͍ ઢܗճؼ ϩδεςΟοΫճؼ ܾఆ %5 47. ਂֶशʢ%-ʣ ֶशͱ ͚Δ͜ͱ ͚Δ͜ͱ͕Ͱ͖Δ͔ΒஅͰ͖Δ ࣄલʹஅͰ͖Δ ༧ଌͰ͖Δ
֓೦ΑΓઌʹֶशͱԿ͔ΛઌʹֶͿ ਓೳ ػցֶश ఆྔԽ͍ͨ͠ ਓؒͷػೳ ˠ ը૾ೝࣝ ࣖ ˠ
Իೝࣝ ޱ ˠ ࣗવݴޠॲཧ ઢܗճؼ ϩδεςΟοΫճؼ ܾఆ %5 47. ਂֶशʢ%-ʣ ਓೳͱԿ͔ʁΑΓ ઌʹֶशͱԿ͔ΛΔ
ਓೳͷݚڀͷྺ࢙͚͍ͩͬͯ͘ ਓೳ ػցֶश ఆྔԽ͍ͨ͠ ਓؒͷػೳ ˠ ը૾ೝࣝ ࣖ ˠ Իೝࣝ
ޱ ˠ ࣗવݴޠॲཧ ઢܗճؼ ϩδεςΟοΫճؼ ܾఆ %5 47. ਂֶशʢ%-ʣ ਓೳͱԿ͔ʁ ݚڀͷྺ࢙͔Βཧղ͢Δ
ݚڀͷྺ࢙Λ͏Α͏ʹ%-Λཧղ͍ͯ͘͠ ਓೳ ػցֶश ఆྔԽ͍ͨ͠ ਓؒͷػೳ ˠ ը૾ೝࣝ ࣖ ˠ
Իೝࣝ ޱ ˠ ࣗવݴޠॲཧ ઢܗճؼ ϩδεςΟοΫճؼ ܾఆ %5 47. ਂֶशʢ%-ʣ $//ʢΈࠐΈχϡʔϥϧωοτʣͱ 3//ʢ࠶ؼܕχϡʔϥϧωοτʣͷཧղ͕ ۩ମతʹਂ·͍ͬͯ͘
ࢦఆਤॻ ЋͰ࠷߹֨Λ࣮ݱ͢Δ
ࢦఆਤॻภΓա͗ ਓೳʢ"*ʣجૅࣝ ػցֶशͷੳख๏ σΟʔϓϥʔχϯά ɾ։ൃͷͨΊͷεϖοΫ ɾ$//ͱ3// ɾཱ֬·Ͱͷྺ࢙ ɾࣾձ࣮ ᶃ ᶄ
ᶅ
ิॆ͖͢Ұ͜Ε͚ͩ ਓೳʢ"*ʣجૅࣝ ػցֶशͷੳख๏ σΟʔϓϥʔχϯά ɾ։ൃͷͨΊͷεϖοΫ ɾ$//ͱ3// ɾཱ֬·Ͱͷྺ࢙ ɾࣾձ࣮ ᶃ ᶄ
ᶅ
ࢦఆਤॻ ЋͰ࠷߹֨Λ࣮ݱ͢Δ डݧʂ ఔͰ ͔ͬ͠Γप ௨ۈͷಡΈͱͯ͠͞Βͬͱ ཧʙ ྺ࢙͕ॏෳͯ͘͠ΔͷͰɺཧղ͕ਂ·Δ ˢްա͗ͯઌʹΔͱɺϝϯλϧ࣋ͨͳ͍ ˢઐతա͗ͯઌʹΔͱɺϝϯλϧ࣋ͨͳ͍
ɾΘ͔Βͳ͍୯ޠάάͬͨ΄͏͕٢ ɾྺ࢙ɺ۩ମతͳݚڀऀཱ֬͞Εͨ ख๏ϊʔτʹ·ͱΊΔ
͜Ε͚ͩσʔλαΠΤϯε ڭࢣ͋Γֶशͱڭࢣͳֶ͠शɺڧԽֶशͷҧ͍Λ ख๏ Έͦͷ෦ҐͰώτʹ͑Β͑Δ͔ʁ σʔλΫϨϯδϯάɾਖ਼نԽ͢Δཧ༝ΛཧղͰ͖ ͍ͯΔ͔ʁ ख๏͝ͱͷಘҙɾෆಘҙ͕େ·͔ʹཧղͰ͖͍ͯ
Δ͔ʁྨͱճؼͷ͍Ͳ͜Ζʁ
͜Ε͚ͩσʔλαΠΤϯε ڭࢣ͋Γֶश ओʹখ͕୲͏ɻֶशऀʹର͠ɺڭࣔऀ͕໌ࣔతʹਖ਼ྫΛఏࣔͨ͠ΓɺֶशऀͷޡΓΛࢦ ఠ͢Δ͜ͱͰɺֶशऀ͕ਖ਼͍͠ղΛಘΔ͜ͱΛॿ͚Δ ڭࢣͳֶ͠श ओʹେൽ࣭͕୲͏ɻ౷ܭతੑ࣭ɺ͋Δछͷ߆ଋ݅ʹΑΓೖྗύλʔϯΛྨͨ͠Γɺ நԽͨ͠Γ͢Δֶशɻ
ڧԽֶश ओʹɺେجఈ͕֩୲͏ɻ࠷ऴ݁Ռ్͘͠தܦաʹରͯ͠ɺͲͷఔΑ͔͔ͬͨΛࣔ ͢ʮใु৴߸ʯʹج͖ͮɺ͜ΕΒͷใुΛͳΔ͘େ͖͘͢ΔΑ͏ʹ୳ࡧ͢Δ
͜Ε͚ͩσʔλαΠΤϯε ڭࢣ͋Γֶश ޡࠩٯ๏˞ͱ͍͏ΞϧΰϦζϜΛཧղͭͭ͠ɺܾఆʢ%FDJTJPO5SFFʣͳͲΛʜ ڭࢣͳֶ͠श ओੳɺࣗݾ৫ԽϚοϓͳͲͷ࣍ݩѹॖʢ%JNFOTJPOBMJUZ$PNQSFTTJPOʣख๏ ڧԽֶश %2/
%FFQ2/FUXPSL͘͠ %FFQ2-FBSOJOH/FUXPSL %%2/ "$ "TZODISPOPVT"EWBOUBHF"DUPS$SJUJD
͜Ε͚ͩਓೳͷྺ࢙ ϒϨʔΫεϧʔΠϕϯτͰྺ࢙Λྨ ϒʔϜऴᖼͷཧ༝͕ɺख๏ͷ՝ཧղʹͭͳ͕Δ ຊ͕ੈքʹউͭͨΊʹʮମੑʯͷ֫ಘ ˠ ཁϩϘοτͷ࣮
͜Ε͚ͩਓೳͷྺ࢙ ୈ࣍"*ϒʔϜʮ୳ࡧɾਪͷ࣌ʯʢʣ ˠ τΠɾϓϩϒϨϜղ͚ͯɺݱ࣮ͷղ͚ͳ͍ ୈ࣍"*ϒʔϜʮࣝͷ࣌ʯʢʙʣ ˠ ֶशͰ͖Δ͕ɺΊͬͪΌ͔͔࣌ؒΔΜʢӬԕʜʣ ୈ࣍"*ϒʔϜʮػցֶशͱಛදݱֶशͷ࣌ʯ ˠจࣈೝࣝͳͲͷύλʔϯೝࣝͰج൫ٕज़͕ੵ σʔ
λ͕૿Ճ ˠ ίϯϐϡʔλ͕ࣗΒಛྔΛ࡞Γग़͢
͜Ε͚ͩσΟʔϓϥʔχϯά ը૾ ΈࠐΈχϡʔϥϧωοτʢ$//ʣ ࣗવݴޠʢςΩετʣ Ի ࠶ؼܕχϡʔϥϧωοτʢ3//ʣ
ͦͷ΄͔ʢྺ࢙ɺ૯ʣ ॱܕɺࣗݾූ߸ԽثɺӅΕϚϧίϑɺFUDʜ
͓ΘΓʹʜ࠷ۙࢥ͏͜ͱ ྲྀߦ͍ͬͯΔ͔Β ֶΜͰΈͨͱͯ͠
͓ΘΓʹʜ࠷ۙࢥ͏͜ͱ ֶΜͩࣝ Θͳ͍ͱΕΔ
͓ΘΓʹʜ࠷ۙࢥ͏͜ͱ ࣮͠ͳ͖Όͳʜ
࣮ʹ͚ͯ ͠ɺ͋ͳ͕ͨػցֶशʢ͋Δ͍%-ʣΛ͍͍ͨͳΒʜ ʢࢲ͕ɺػցֶशͱXFCΞϓϦΛབྷΊΔ্Ͱ࠷ۙॏཁͩͳͬͯࢥ͍ͬͯΔ͜ͱʣ ԿΛ༧ଌ͍͔ͨ͠ʁΑΓઌʹɺԿΛྨ͍͔ͨ͠ʁ ࣾձͰʮ͚Δਫ਼ʯ͕͍໘͔Βݟ͚ͭΑ͏ உঁͷ͚ํΛػցֶशͰ༧ଌ͢Δඞཁ͕͋Δͷ͔ʁ
σʔλ͕͋Δ͔ʁ͋Δ͍ɺೖख͍͔͢͠ʁ ఏڙऀɺ͋ͳͨʹσʔλΛఏڙ͢ΔϝϦοτ͕͋Δ͔ʁ ങ͍͍ͨͷΛઌಡΈͯ͘͠ΕΔͳΒɺങ͍ཤྺڭ͍͍͑ͯʁ
1ZUIPO HVJME)*%&'6,"/0 σʔλαΠΤϯεೖγϦʔζ ͱ ରࡦ +%-"%FFQ-FBSOJOHGPS(&/&3"- ͓ΘΓ