AutoAugment
- 16 operations:
- 14 from the Python image library
PIL: rotating, color inverting,
posterizing (reducing pixel bits),
solarizing (inverting colors above a
threshold), etc.
- Plus Cutout and SamplePairing
- 10 magnitudes, 11 probabilities
- Trained using Recurrent Neural
Network trained with Proximal Policy
Optimization
Ekin DC, Barret Z, Dandelion M, Vijay V, Quoc VL. AutoAugment: learning augmentation policies from data. ArXiv preprint.
2018.