Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第一回☆GREE AI Programming ContestでTensorFlow
Search
gree_tech
PRO
November 15, 2018
Technology
0
250
第一回☆GREE AI Programming ContestでTensorFlow
TensorFlow User Group #5 で発表された資料です。
https://tfug-tokyo.connpass.com/event/56100/
gree_tech
PRO
November 15, 2018
Tweet
Share
More Decks by gree_tech
See All by gree_tech
変わるもの、変わらないもの :OSSアーキテクチャで実現する持続可能なシステム
gree_tech
PRO
0
3.2k
マネジメントに役立つ Google Cloud
gree_tech
PRO
0
34
今この時代に技術とどう向き合うべきか
gree_tech
PRO
3
2.5k
生成AIを開発組織にインストールするために: REALITYにおけるガバナンス・技術・文化へのアプローチ
gree_tech
PRO
0
240
安く・手軽に・現場発 既存資産を生かすSlack×AI検索Botの作り方
gree_tech
PRO
0
220
生成AIを安心して活用するために──「情報セキュリティガイドライン」策定とポイント
gree_tech
PRO
1
1.6k
あうもんと学ぶGenAIOps
gree_tech
PRO
0
340
MVP開発における生成AIの活用と導入事例
gree_tech
PRO
0
370
機械学習・生成AIが拓く事業価値創出の最前線
gree_tech
PRO
0
260
Other Decks in Technology
See All in Technology
What happened to RubyGems and what can we learn?
mikemcquaid
0
300
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.5k
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
120
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.9k
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
5
5.6k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
240
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.4k
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
300
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
390
Featured
See All Featured
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
Writing Fast Ruby
sferik
630
62k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
The agentic SEO stack - context over prompts
schlessera
0
640
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
430
Designing for Performance
lara
610
70k
Bash Introduction
62gerente
615
210k
Transcript
Copyright © GREE, Inc. All Rights Reserved. 第⼀回☆GREE AI Programming
Contest で TensorFlow 2017/05/24 グリー株式会社 開発本部データエンジニアリンググループ 森⽥ 想平
Copyright © GREE, Inc. All Rights Reserved. • グリーという会社で、全社横断的な分析基盤を開発運⽤するチームを マネジメントしています
• 最近はAI関連システムも⾒ています • アナリストチームは別にある ⾃⼰紹介(会社の宣伝) 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • 開催のきっかけ /
開催趣旨 • 開催概要 • 運営側が⽤意したもの • 実施期間中の出来事 • 参加者、運営者の感想など • まとめ あらすじ 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. 開催のきっかけ トップダウン 第⼀回☆GREE
AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. トップの気持ち 第⼀回☆GREE AI
Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. 開催趣旨 第⼀回☆GREE AI
Programming ContestでTensorFlow • リテラシーをあげる • 輪読会なども以前から実施 • http://www.deeplearningbook.org/ • 正しい⽅向に夢を広げたい • 低コストで使える環境を⽤意する • 使えばわかる事は多い(使わないとよくわからない) • なるべく沢⼭のエンジニアが触った⽅がよい • 応⽤範囲が広い • 興味ある⼈も多い
Copyright © GREE, Inc. All Rights Reserved. • 開催のきっかけ /
開催趣旨 • 開催概要 • 運営側が⽤意したもの • 実施期間中の出来事 • 参加者、運営者の感想など • まとめ あらすじ 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • ⽇時 •
2016年9⽉中旬 2週間 • 最初1週間の予定だったが伸びた • 参加者数 • 18チーム 30⼈くらい • 思ったより多くなったので途中で締め切り 開催概要 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • お題 •
画像の2値分類 • 決まりごと • チーム戦(1〜3名) • ⽣成されたモデルの権利は会社に帰属 • 簡単な賞品あり • 画像の取り扱いについて取り決めをし、誓約する • Ex. コンテスト環境(AWS)外への持ち出し禁⽌。ローカルPC使⽤不可 • 業務外の時間で お題 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • 学習データセット •
OK: 30,000件、NG: 10,000件 • 評価データセット • 6,000件のhash key+labelを、規定のAPIに送信すると、そのう ち秘密の4,000件のみを対象にしたスコアを返す • コンテスト期間終了後、最後に送信されたデータ6,000件すべてを利 ⽤した精度で順位を判定 • つまり、最終結果だけ6,000件すべてを利⽤する 評価⽅法 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. Ref. プロダクション側での実装 第⼀回☆GREE
AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • 開催のきっかけ /
開催趣旨 • 開催概要 • 運営側が⽤意したもの • 実施期間中の出来事 • 参加者、運営者の感想など • まとめ あらすじ 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • コンテスト⽤のAWS環境 •
サンプルプログラム • サンプルプログラムが動くようセットアップしたAMI • データセット • スコア計算のためのAPIサーバ • サポートチャット 運営側が⽤意したもの 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • なんでAWSだったのか •
業務で幅広く利⽤しており、アカウントやセキュリティ周りの設 定等になれてたから • (Google) Cloud Datalabも検討しました • 専⽤アカウントを作り、そこに各チームがEC2をたてて、作業を⾏う • g2.2xlargeが各チーム1インスタンス • APIサーバもそのアカウントの中にある 運営側が⽤意したもの コンテスト⽤のAWS環境
Copyright © GREE, Inc. All Rights Reserved. • (注︓コンテストは2016/09に実施しました) •
CUDA 7.5-18 (for Ubuntu14.04) • cuDNN v4.0 for CUDA 7.0 • Python3 • TensorFlow 0.9.0 • がインストールしてあるAMIを⽤意 • awsコマンド⽤の設定ファイルに上記AMI(やセキュリティグループ 等)を書いておいて、それを使ってインスタンス作成等してもらう 運営側が⽤意したもの サンプルプログラムが動くようセットアップしたAMI
Copyright © GREE, Inc. All Rights Reserved. • サンプルコードとデータはS3に置いておき、コピーしてもらう •
データはStandard TensorFlow formatと⽣画像の両⽅⽤意 • 4万枚程度 • サンプルコード • ⽣TensorFlow • 畳み込み層が2層、全結合が1層の、⽐較的単純なネットワーク 運営側が⽤意したもの サンプルコードとデータセット トレーニング % python train.py --data_dir='data/train/*' --max_steps=100000 評価 % python output.py --checkpoint_dir=./train --eval_data=data/eval > result.json
Copyright © GREE, Inc. All Rights Reserved. • WebUIからチーム名を登録してもらってAPIキーを発⾏ •
回答の送信時にはチーム名とAPIキーで認証 • 回答の送信はAPIを直接叩いてもいいけど、ラップしたコードを配る • チーム⼀覧と現時点でのランキングを表⽰できる • 最終スコアを⼀番最後の回答に対して計算する • スコアは単純な正解率(正しく分類できたデータの⽐率) 運営側が⽤意したもの スコア計算のためのAPIサーバ 評価結果をAPIサーバに送信 % ./submit result.json
Copyright © GREE, Inc. All Rights Reserved. • 開催のきっかけ /
開催趣旨 • 開催概要 • 運営側が⽤意したもの • 実施期間中の出来事 • 参加者、運営者の感想など • まとめ あらすじ 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • モデルの改善 •
とりあえず複雑にしたり • 前処理の⼯夫 • 画像に既存の仕組み( Cloud Vision APIか何か)ラベルをつけて、 そのラベルを特徴にして分類した。 • ⽬視でもっと細かいラベルを⾃分たちでひたすらつけた • こっちの⽅が効果があった コンテスト中のできごと 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • 開催のきっかけ /
開催趣旨 • 開催概要 • 運営側が⽤意したもの • 実施期間中の出来事 • 参加者、運営者の感想など • まとめ あらすじ 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • 参加者の感想 •
とりあえずマシンパワーが貧弱 • 基本的に学習がゆっくり • 3⼈チームで1⼈がGPU使うと2⼈が暇⼈になる • 分散もしたくなる • 運営の感想 • 動いてよかった • 実アプリに適⽤する場合のだいたいの流れが把握できた • こういうのに興味ある⼈や、各⼈の熱量がわかってよかった 終わってみて 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • 開催のきっかけ /
開催趣旨 • 開催概要 • 運営側が⽤意したもの • 実施期間中の出来事 • 参加者、運営者の感想など • まとめ あらすじ 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved. • 深層学習に慣れ親しむためのプログラミングコンテストを実施した •
たくさんのエンジニアが、体験できた • 参加者はTensorFlowを書くだけのつもりだった • つもりだったが、結局前処理を頑張る感じになりました • 私が浅はかでした • 第⼆回もやる予定 まとめ 第⼀回☆GREE AI Programming ContestでTensorFlow
Copyright © GREE, Inc. All Rights Reserved.