Upgrade to Pro — share decks privately, control downloads, hide ads and more …

今日から始める Amazon Bedrock AgentCore

Avatar for Har1101 Har1101
January 31, 2026

今日から始める Amazon Bedrock AgentCore

2026/01/31 (土)
JAWS-UG名古屋 あけましておめでとう! 2025年お気に入りサービスアップデート祭り!
での登壇資料です

Avatar for Har1101

Har1101

January 31, 2026
Tweet

More Decks by Har1101

Other Decks in Technology

Transcript

  1. Who am I ? 福地 開 (ふくち はるき) @har1101mony 所属:JAWS-UG東京

    年次:3年目 業務:Agent Builder 選出:AWS Community Builders (AI Engineering) 2025 Japan AWS Jr.Champions 2025 Japan All AWS Certifications Engineers
  2. 今日話すこと ◆2025年7月に新登場したAmazon Bedrock AgentCoreについて • AgentCoreとは • AgentCoreのメイン機能解説 • AgentCoreの利用方法解説

    • 組織でAgentCoreを活用するために • まとめ ※資料中で「AI」と記載しているものは「生成AI」とりわけ「LLM」のことを指します ※所属組織とは一切関係ない、私個人の意見・考えとなります
  3. AWS Summit New York City 2025 ◆現状整理 • 2025年は従来のアプリケーションとは異なるソフトウェアとして、 AIエージェント開発の機運が高まってきた。

    • AIエージェントは以下3つの特徴を持つ。 1. Decomposition(分解): 他のエージェントを呼び出すことも可能。 https://www.youtube.com/watch?v=2890bEb61qQ
  4. AWS Summit New York City 2025 ◆現状整理 • 2025年は従来のアプリケーションとは異なるソフトウェアとして、 AIエージェント開発の機運が高まってきた。

    • AIエージェントは以下3つの特徴を持つ。 1. Decomposition(分解): 他のエージェントを呼び出すことも可能。 https://www.youtube.com/watch?v=2890bEb61qQ Decomposition(分解) 目標を入力として受け取り、そ の目標を達成するため必要な計 画やコードに分解する。
  5. AWS Summit New York City 2025 ◆現状整理 • 2025年は従来のアプリケーションとは異なるソフトウェアとして、 AIエージェント開発の機運が高まってきた。

    • AIエージェントは以下3つの特徴を持つ。 1. Decomposition(分解): 他のエージェントを呼び出すことも可能。 https://www.youtube.com/watch?v=2890bEb61qQ Self-reflection(振り返り) 人間が用意した手順やプログラ ム通りに動くのではなく、目標 に到達するまで振り返りを重ね、 動的に動きを変える。
  6. AWS Summit New York City 2025 ◆現状整理 • 2025年は従来のアプリケーションとは異なるソフトウェアとして、 AIエージェント開発の機運が高まってきた。

    • AIエージェントは以下3つの特徴を持つ。 1. Decomposition(分解): 他のエージェントを呼び出すことも可能。 https://www.youtube.com/watch?v=2890bEb61qQ Actions&Tools(ツール使用) APIリクエストを行ってデータ取 得やプログラム実行を行う。 他のエージェントを呼び出すこと も可能。
  7. AWS Summit New York City 2025 ◆現状整理 • AIエージェントを構築するためのフレームワークも徐々に増えてきた。 •

    フレームワークを使うことで分解や振り返りなどのロジックを書く必要が 無くなり、エージェントのコア機能実装に集中できる。 • フレームワークによって高速にエージェント実証実験ができるようになった。 https://www.youtube.com/watch?v=2890bEb61qQ
  8. AWS Summit New York City 2025 ◆課題 • しかし依然として、エージェントを本番環境で動かすのは大変! •

    実行環境の隔離とスケーリング、会話履歴の記憶と圧縮、認証認可、 ツールの管理、コードの安全な実行環境、動作の観測…など 差別化されない重労働が数多く存在する。 https://www.youtube.com/watch?v=2890bEb61qQ
  9. AWS Summit New York City 2025 ◆Amazon Bedrock AgentCore •

    差別化されない重労働を無くし本来やりたいプロダクト価値創出に 集中するための、AIエージェント実行・運用基盤 https://www.youtube.com/watch?v=2890bEb61qQ
  10. AgentCore Runtime とは ◆AIエージェント(およびツール)のコードをホストする基盤(≒Lambda) • サーバーレスにスケール可能なコンテナ基盤 • セッションごとにマイクロVMを立ち上げてくれるので、 簡単に実行環境を隔離することが可能 •

    LLMの出力待機時間など、I/O 待ちの時間はCPUリソースに課金されない ◆好きなフレームワーク・好きなモデルを使うことができる • コードで書かれてさえいれば、どんなエージェントでも動かせる • エージェントだけでなく、ツールも一緒にデプロイ可能 • (フロントエンドは包含できないので別途必要) • ほぼLambdaと考えると、中で動くコードが必要 →フレームワーク使ってエージェントを定義する
  11. AgentCore Runtime の要件 ◆RuntimeはHTTP/MCP/A2Aのプロトコルをサポートしている • 作ったエージェントを呼び出す場合はHTTPを使う • HTTPにおいては以下の要件が設定されている 項目 要件

    補足 ホスト 0.0.0.0 ポート 8080 プラットフォーム ARM64コンテナ AgentCore Runtime環境との互換性のためARM64のみ エンドポイント1 /invocations - POST エージェントを呼び出すエンドポイント エンドポイント2 (オプション) /ws - WebSocket エージェントとリアルタイムの双方向通信がしたい場合 は/invocationsではなくこちら エンドポイント3 /ping - GET エージェントのヘルスチェック用エンドポイント インバウンド認証 IAM(SigV4) / JWT 裏側ではAgentCore Identityが使われている(後述)
  12. AgentCore Runtime の要件 ◆RuntimeはHTTP/MCP/A2Aのプロトコルをサポートしている • 作ったエージェントを呼び出す場合はHTTPを使う • HTTPにおいては以下の要件が設定されている 項目 要件

    補足 ホスト 0.0.0.0 ポート 8080 プラットフォーム ARM64コンテナ AgentCore Runtime環境との互換性のためARM64のみ エンドポイント1 /invocations - POST エージェントを呼び出すエンドポイント エンドポイント2 (オプション) /ws - WebSocket エージェントとリアルタイムの双方向通信がしたい場 合は/invocationsではなくこちら エンドポイント3 /ping - GET エージェントのヘルスチェック用エンドポイント インバウンド認証 IAM(SigV4) / JWT 裏側ではAgentCore Identityが使われている(後述) なんか大変そう… 差別化されない重労働どこいった?
  13. AgentCore Runtime の要件 ◆RuntimeはHTTP/MCP/A2Aのプロトコルをサポートしている • 作ったエージェントを呼び出す場合はHTTPを使う • HTTPにおいては以下の要件が設定されている 項目 要件

    補足 ホスト 0.0.0.0 ポート 8080 プラットフォーム ARM64コンテナ AgentCore Runtime環境との互換性のためARM64のみ エンドポイント1 /invocations - POST エージェントを呼び出すエンドポイント エンドポイント2 (オプション) /ws - WebSocket エージェントとリアルタイムの双方向通信がしたい場 合は/invocationsではなくこちら エンドポイント3 /ping - GET エージェントのヘルスチェック用エンドポイント インバウンド認証 IAM(SigV4) / JWT 裏側ではAgentCore Identityが使われている(後述) 任せろ https://github.com/aws/bedrock-agentcore-sdk-python https://github.com/aws/bedrock-agentcore-starter-toolkit
  14. AgentCore Runtime へエージェントをデプロイ 1. AIエージェント開発フレームワークを用いてエージェントを構築 • 入門へのおすすめフレームワークはStrands Agents SDK 2.

    構築したエージェントにAgentCore SDKの処理を追加 • とても簡単、デコレータを追加するくらい 3. AgentCore Runtimeへデプロイ • 便利なCLIコマンドが用意されており、最短2コマンドでデプロイまで完了 4. 作ったエージェントを呼び出す
  15. 1. Strands Agents SDKでエージェントを構築 ◆そもそもStrands Agents SDKとは(ざっくり) : 3行でエージェントが構築できる優れモノ •

    ただし、あくまでエージェントを作るだけ • これだけでは先程のRuntime上で動くために必要な要件を満たせない https://qiita.com/minorun365/items/dd05a3e4938482ac6055
  16. 2. AgentCore SDKを用いる ◆AgentCore SDKを使うと、AgentCore Runtimeへデプロイするため に必要な要件を自動で満たしてくれる ◆4つの要素を追加する • AgentCore

    SDKの インポート • AgentCore SDKで Webサーバー初期化 • エージェント呼び出し 関数を修飾 • 実行コマンドの追加
  17. 3. AgentCore Runtimeへデプロイ ◆AgentCore Starter Toolkitという便利なものがある! • agentcore configure/createコマンド: ECR/S3、Runtimeサービスロール、依存関係の設定、インバウンド認証の

    設定、AgentCore Memoryの設定…などを対話形式で設定 • 上記設定をまるっと纏めた .bedrock_agentcore.yaml を作成してくれる • ソースのZip化/Dockerfile作成も実施してくれる
  18. 3. AgentCore Runtimeへデプロイ ◆AgentCore Starter Toolkitという便利なものがある! • agentcore launch/deployコマンド: CodeBuild上でのdocker

    build、ECR/S3へのプッシュ、 ECRのImageやS3のZipファイルを参照してRuntimeへのデプロイまで実施 (ロググループ作成・サービスロール紐づけなども自動でしてくれる) • たった2コマンドでデプロイまで完了できる!
  19. Runtime上のエージェントからGatewayへアクセス ※スライドですべてを説明するのは無理なのでざっくり 1. Gatewayをコンソールなどで作成し、Identityを設定する 2. エージェントにおいてGatewayアクセス用のトークンを取得する • これもAgentCore SDKの機能 3.

    GatewayをMCPとして接続し、エージェントにツールを追加 • 普通のMCP接続と同じ形式 4. AgentCore Runtimeへデプロイ • さっきと同じ手順 5. 作ったエージェントを呼び出す