rights reserved. Masaki Samejima Solutions Architect, Amazon Web Services Japan. 2018.12.14 㼭鋉垷歗⫷ر٦ةإحزח 㼎ׅ堣唒㷕统ך،فٗ٦ث Data Engineering & Data Analysis WS#7
rights reserved. Data Augmentation GAN ⯋歗⫷ 欰䧭歗⫷ ⸇䊨٥嫰鯰粸鵤׃ծ ⯋歗⫷ה⼒ⴽָאַזְ ״ֲז歗⫷荈⹛欰䧭 嫰鯰 A. Antoniou, et al., Data Augmentation Generative Adversarial Networks, arXiv:1711.04340, 2017
rights reserved. AutoAugment • 圫ղז⸇䊨倯岀ָ֮זַדծ歗⫷ח״ג黝ⴖז⸇䊨倯岀כ麩ֲכ׆ • 歗⫷ַ荈⹛ד黝ⴖז⸇䊨倯岀ⴻ倖׃ג黝欽 Ekin D. Cubuk, et al., AutoAugment: Learning Augmentation Policies from Data, arXiv:1805.09501, 2018
rights reserved. 稱➜׃ְⰻ㺁 • FaceNet: 겣歗⫷钠陎 F. Schroff, et al., FaceNet : A Unified Embedding for Face Recognition and Clustering, CVPR 2015 • Matching Network: 㼰侧歗⫷钠陎 (A few shot learning) O. Vinyals, et al., Matching Networks for One Shot Learning, arXiv:1606.04080 • AnoGAN: 歗⫷殯䌢嗚濼 T. Schlegl, Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery, IPMI2017
rights reserved. FaceNet F. Schroff, et al., FaceNet : A Unified Embedding for Face Recognition and Clustering, CVPR 2015 • 1➂֮ך겣歗⫷卐侧ָ㼰זְ㜥さך겣钠陎 • 겣歗⫷嫰鯰׃ג • ず♧➂暟ך겣כזץֻ鵚ֻח • ➭➂ך겣כזץֻ黅ֻח ז״ֲח瑞חꂁ縧ׅկ ず♧➂暟→鵚ְ ➭➂→黅ְ
rights reserved. Matching Network ך嚊銲 • 㷕统ر٦ةך♧鿇Support setה嫰鯰׃גծ⡂גְ歗⫷ךٓ كٕ⳿⸂ׅאתMatching) • ⡂גְ䏝さְ Deep Learning ד㷕统ׅ Support set ⴓ겲㼎韋 ⴓ겲㼎韋כ Ӎ ח⡂גְ O. Vinyals, et al., Matching Networks for One Shot Learning, arXiv:1606.04080