Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多変量解析
Search
katsutan
March 23, 2017
Technology
0
120
多変量解析
長岡技術科学大学 自然言語処理研究室 B3ゼミ発表8
katsutan
March 23, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
230
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
210
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
260
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
210
Improving Word Embeddings Using Kernel PCA
katsutan
0
220
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
320
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
260
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
Other Decks in Technology
See All in Technology
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
230
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
150
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
0
460
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
190
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.9k
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
17
2.8k
Claude Codeを使った情報整理術
knishioka
11
8.4k
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
120
Snowflake Industry Days 2025 Nowcast
takumimukaiyama
0
130
株式会社ビザスク_AI__Engineering_Summit_Tokyo_2025_登壇資料.pdf
eikohashiba
1
120
Connection-based OAuthから学ぶOAuth for AI Agents
flatt_security
0
390
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
480
Featured
See All Featured
Designing Powerful Visuals for Engaging Learning
tmiket
0
190
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
For a Future-Friendly Web
brad_frost
180
10k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
130
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.3k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
73
Being A Developer After 40
akosma
91
590k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
120
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.8k
Transcript
多変量解析 長岡技術科学大学 自然言語処理研究室 学部3年 勝田 哲弘 1 2017/3/23
多変量解析とは • 変量(変数) ▫ 資料の項目 • 多変量解析 ▫ 複数の項目で構成された資料の分析 2
多変量資料 個体名 w ・・・ z 1 2 ・ ・ ・
n 3 個 体 変量 • 加工されていない生のデータを個票、個票デー タ、1次データという。
パス図 • 変量の関係を示す図。 4 婚姻率 人口 旅券発行率 誤差 2 相
関 影響
潜在変数 • 直接観測できない隠れた変数 5 理科 数学 国語 英語 社会 eu
ey ex ev ew 理系能力 文系能力
分析 • 回帰分析 ▫ 変量を式で表す • 主成分分析 ▫ 分散が最大となる新変量を合成 •
因子分析 ▫ データから原因を見つける ▫ SEM(structural equation models) • 判別分析 ▫ 別れ方を調べる 6
主成分分析 • データの見方を変える • 合成変量 = + + (2 +
2 + 2 = 1) 3変量, , 、各変量の重み, , 7 p p
主成分 = + + ( = 1,2, … , )
• 合成変量の分散が最大の時 ▫ 主成分 ▫ 主成分負荷量 , , • 分散 2 2 = 1 (1 − )2+(2 − )2+ ⋯ + ( − )2 8
寄与率 • 寄与率C 0 ≤ ≤ 1 寄与率 = 主成分の分散
各変量の分散の和 = 2 2 + 2 + 2 9
第2主成分 • 最初に抽出した第1主成分の残りから主成分を 抽出する = + + 第1主成分を取り除いた変量′, ′, ′
′ = ′′ + ′′ + ′′ (′2 + ′2 + ′2 = 1) • 寄与率 寄与率′ = ′ 2 2 + 2 + 2 10
プロット • 変量プロット ▫ 主成分から評価 , ′ , ′ ,
′ • 主成分得点プロット ▫ 各個体の特長を主成分の観点から解釈 , ′ 11
ラグランジュの未定係数法 最大の を求める = + + (2 + 2 +
2 = 1) 変量を5(x,y,u,v,w)とした場合 = 1 (1 − )2+ ⋯ + − 2 −(2 + 2 + ⋯ + 2 − 1) = 0, = 0, = 0, = 0, = 0 12
ラグランジュの未定係数法 = 2 2 + + + + − 2
= 0 2 2 2 2 2 = 固有値問題に帰着する 13
参考文献 • First Book 多変量解析がわかる 涌井貞美 涌井良幸 著 技術評論社 14