Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多変量解析
Search
katsutan
March 23, 2017
Technology
0
120
多変量解析
長岡技術科学大学 自然言語処理研究室 B3ゼミ発表8
katsutan
March 23, 2017
Tweet
Share
More Decks by katsutan
See All by katsutan
What does BERT learn about the structure of language?
katsutan
0
220
Simple and Effective Paraphrastic Similarity from Parallel Translations
katsutan
0
200
Simple task-specific bilingual word embeddings
katsutan
0
210
Retrofitting Contextualized Word Embeddings with Paraphrases
katsutan
0
250
Character Eyes: Seeing Language through Character-Level Taggers
katsutan
1
200
Improving Word Embeddings Using Kernel PCA
katsutan
0
210
Better Word Embeddings by Disentangling Contextual n-Gram Information
katsutan
0
310
Rotational Unit of Memory: A Novel Representation Unit for RNNs with Scalable Applications
katsutan
0
250
A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings
katsutan
0
290
Other Decks in Technology
See All in Technology
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
330
今日から始めるAWSセキュリティ対策 3ステップでわかる実践ガイド
yoshidatakeshi1994
0
110
「どこから読む?」コードとカルチャーに最速で馴染むための実践ガイド
zozotech
PRO
0
550
プラットフォーム転換期におけるGitHub Copilot活用〜Coding agentがそれを加速するか〜 / Leveraging GitHub Copilot During Platform Transition Periods
aeonpeople
1
230
人工衛星のファームウェアをRustで書く理由
koba789
15
8.2k
Automating Web Accessibility Testing with AI Agents
maminami373
0
1.3k
Terraformで構築する セルフサービス型データプラットフォーム / terraform-self-service-data-platform
pei0804
1
190
dbt開発 with Claude Codeのためのガードレール設計
10xinc
2
1.3k
Snowflake×dbtを用いたテレシーのデータ基盤のこれまでとこれから
sagara
0
120
AWSを利用する上で知っておきたい名前解決のはなし(10分版)
nagisa53
10
3.2k
【NoMapsTECH 2025】AI Edge Computing Workshop
akit37
0
230
要件定義・デザインフェーズでもAIを活用して、コミュニケーションの密度を高める
kazukihayase
0
120
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Statistics for Hackers
jakevdp
799
220k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
It's Worth the Effort
3n
187
28k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Being A Developer After 40
akosma
90
590k
GraphQLとの向き合い方2022年版
quramy
49
14k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
Transcript
多変量解析 長岡技術科学大学 自然言語処理研究室 学部3年 勝田 哲弘 1 2017/3/23
多変量解析とは • 変量(変数) ▫ 資料の項目 • 多変量解析 ▫ 複数の項目で構成された資料の分析 2
多変量資料 個体名 w ・・・ z 1 2 ・ ・ ・
n 3 個 体 変量 • 加工されていない生のデータを個票、個票デー タ、1次データという。
パス図 • 変量の関係を示す図。 4 婚姻率 人口 旅券発行率 誤差 2 相
関 影響
潜在変数 • 直接観測できない隠れた変数 5 理科 数学 国語 英語 社会 eu
ey ex ev ew 理系能力 文系能力
分析 • 回帰分析 ▫ 変量を式で表す • 主成分分析 ▫ 分散が最大となる新変量を合成 •
因子分析 ▫ データから原因を見つける ▫ SEM(structural equation models) • 判別分析 ▫ 別れ方を調べる 6
主成分分析 • データの見方を変える • 合成変量 = + + (2 +
2 + 2 = 1) 3変量, , 、各変量の重み, , 7 p p
主成分 = + + ( = 1,2, … , )
• 合成変量の分散が最大の時 ▫ 主成分 ▫ 主成分負荷量 , , • 分散 2 2 = 1 (1 − )2+(2 − )2+ ⋯ + ( − )2 8
寄与率 • 寄与率C 0 ≤ ≤ 1 寄与率 = 主成分の分散
各変量の分散の和 = 2 2 + 2 + 2 9
第2主成分 • 最初に抽出した第1主成分の残りから主成分を 抽出する = + + 第1主成分を取り除いた変量′, ′, ′
′ = ′′ + ′′ + ′′ (′2 + ′2 + ′2 = 1) • 寄与率 寄与率′ = ′ 2 2 + 2 + 2 10
プロット • 変量プロット ▫ 主成分から評価 , ′ , ′ ,
′ • 主成分得点プロット ▫ 各個体の特長を主成分の観点から解釈 , ′ 11
ラグランジュの未定係数法 最大の を求める = + + (2 + 2 +
2 = 1) 変量を5(x,y,u,v,w)とした場合 = 1 (1 − )2+ ⋯ + − 2 −(2 + 2 + ⋯ + 2 − 1) = 0, = 0, = 0, = 0, = 0 12
ラグランジュの未定係数法 = 2 2 + + + + − 2
= 0 2 2 2 2 2 = 固有値問題に帰着する 13
参考文献 • First Book 多変量解析がわかる 涌井貞美 涌井良幸 著 技術評論社 14