Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[Journal club] DIRL:Domain-Invariant Representa...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
May 19, 2022
Technology
0
240
[Journal club] DIRL:Domain-Invariant Representation Learning for Sim-to-Real Transfer
Semantic Machine Intelligence Lab., Keio Univ.
PRO
May 19, 2022
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
[Journal club] MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
keio_smilab
PRO
0
27
[Journal club] Seeing the Unseen: Visual Common Sense for Semantic Placement
keio_smilab
PRO
0
26
[Journal club] Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot
keio_smilab
PRO
0
7
[Journal club] RAM: Retrieval-Based Affordance Transfer for Generalizable Zero-Shot Robotic Manipulation
keio_smilab
PRO
1
11
[Journal club] Simplified State Space Layers for Sequence Modeling
keio_smilab
PRO
0
26
[Journal club] Detecting and Preventing Hallucinations in Large Vision Language Models
keio_smilab
PRO
1
72
[IROS24] Object Segmentation from Open-Vocabulary Manipulation Instructions Based on Optimal Transport Polygon Matching with Multimodal Foundation Models
keio_smilab
PRO
0
46
[IROS24] Learning-To-Rank Approach for Identifying Everyday Objects Using a Physical-World Search Engine
keio_smilab
PRO
0
77
[RSJ24] オフライン軌道生成による軌道に基づくOpen-Vocabulary物体操作タスクにおける将来成否予測
keio_smilab
PRO
1
120
Other Decks in Technology
See All in Technology
心が動くエンジニアリング ── 私が夢中になる理由
16bitidol
0
110
あなたの知らない Function.prototype.toString() の世界
mizdra
PRO
2
470
Why App Signing Matters for Your Android Apps - Android Bangkok Conference 2024
akexorcist
0
130
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
3
390
TypeScript、上達の瞬間
sadnessojisan
48
14k
Chasing the White Whale of Open Source - ROI
mrbobbytables
0
110
OCI Security サービス 概要
oracle4engineer
PRO
0
6.5k
VideoMamba: State Space Model for Efficient Video Understanding
chou500
0
200
OCI Vault 概要
oracle4engineer
PRO
0
9.7k
型チェック 速度改善 奮闘記⌛
tocomi
1
110
Next.jsとNuxtが混在? iframeでなんとかする!
ypresto
1
270
100 名超が参加した日経グループ横断の競技型 AWS 学習イベント「Nikkei Group AWS GameDay」の紹介/mediajaws202411
nikkei_engineer_recruiting
1
170
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Optimizing for Happiness
mojombo
376
70k
Side Projects
sachag
452
42k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
Faster Mobile Websites
deanohume
305
30k
Unsuck your backbone
ammeep
668
57k
It's Worth the Effort
3n
183
27k
A designer walks into a library…
pauljervisheath
204
24k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Building an army of robots
kneath
302
43k
Git: the NoSQL Database
bkeepers
PRO
427
64k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
900
Transcript
Ajay Kumer Tanwai ( University of California, Berkeley ) DIRL
: Domain-Invariant Representation Learning for Sim-to-Real Transfer Tanwani, Ajay Kumar. "DIRL: Domain-Invariant Representation Learning for Sim-to-Real Transfer." CoRL (2020). 慶應義塾大学 杉浦孔明研究室 畑中駿平
2 • ドメイン適応 ( Domain Adaptation )の新たなアルゴリズム DIRL (ドメイン不変表現学習, Domain-Invariant
Representation Learning ) の提案 概要 ✓ 敵対的学習を含む4つの損失関数の導入 ✓ Sim-to-Real の把持タスクで高い精度を獲得
3 • 機械学習において、データに分布の偏り(ドメインバイアス) があることが多い − 大量のシミュレーションデータ vs 少量の実機環境データ − ドメインバイアスを無視すると精度が悪化
⇒ドメイン適応( Domain Adaptation ) によって解消 背景:機械学習データにはドメインバイアスが存在する Source Domain Target Domain イヌ ネコ ドメインシフト
4 既存研究:様々なアプローチからのドメイン適応 既存手法 特徴 DANN [Ganin+, 2016] • 敵対的学習によるドメイン適応 •
Source Domain か Target Domainを識別させる [Saito+, CVPR2018] • ラベルおよび条件付きドメイン適応 • 2つのクラス識別器それぞれの推定結果の不一致(discrepancy)に注目 [Seita+, IROS2020] • Sim-to-Real Transfer の手法・ドメインランダム法 • ドメイン間の不一致をシミュレーションパラメータの変動として扱う [Saito+, CVPR18] DANN[Ganin+, 2016]
5 • 既存研究のドメイン適応の問題設定 − 入力分布 ( 周辺分布 ) を揃える −
出力ラベル分布 ( 条件付き分布 ) は不変 • 出力ラベル分布も実際は異なる − cross-label match − label-shift 既存研究の問題点:入力分布のみでのドメイン適応 ✓ 周辺分布と条件付き分布の両方 をドメイン適応させる
6 • Simulator or Source Domain: 𝐷𝑠 , 𝜋𝑠 𝒙𝑖
𝑆, 𝒚𝑖 𝑆 𝑖=1 𝑁𝑆 • Real or Target Domain: 𝐷𝑇 , 𝜋𝑇 𝒙𝑖 𝑇, 𝒚𝑖 𝑇 𝑖=1 𝑁𝑇 𝑁𝑇 ≪ 𝑁𝑆 • Policy 𝜋:𝒳 → ℝ 𝒴 0,1, … , 𝐾 or ℝ𝐾 − ここでの Policy は 𝑋 → 𝑔 𝑍 → 𝑓 𝑌 に対応 問題提起:ドメイン適応における問題設定・目的関数 Target Domainでの誤差が小さくなるような Policy 𝜋 を学習 ℒ𝐷𝑇 = 𝔼𝒙~𝐷𝑇 𝕀 𝜋 𝒙 ≠ 𝜋𝑇 𝒙 Target Domain の数は Source Domain よりも少ない
7 • 周辺確率分布・条件付き確率分布の条件 − Pr 𝑋𝑆, 𝑌𝑆 = Pr 𝑌𝑆|𝑋𝑆
Pr 𝑋𝑆 , Pr 𝑌𝑇|𝑋𝑇 Pr 𝑋𝑇 • DIRL は S / T の2つの分布をそろえることが目的 提案手法の問題設定・目的の確認 周辺分布の 不一致さ 条件付き分布の 不一致さ 周辺分布と条件付き分布の 両方をドメイン適応させる
8 提案手法 ( 1/5 ):全体像と4つ損失関数を設定 ℒDIRL = policy loss +
marginal alignment loss + conditional alignment loss + soft triplet loss S / T それぞれの Cross-Entropy 損失関数
9 • Source / Target Domain の周辺分布を敵対的学習によって揃える • Generator 𝑔(𝑋):データを
S / T 共有の特徴空間に符号化 − Target Domain のデータのみに関する特徴抽出器を適応 ( ∵ 𝑁𝑇 ≪ 𝑁𝑆 ) − 特徴分布 ( 周辺分布 ) において、S / T を一致させる • Discriminator 𝐷(𝑋):データが S / T のどちらかを識別 − 特徴分布 ( 周辺分布 ) において、S / T を一致させないようにする 提案手法 ( 2/5 ):Marginal Alignment Loss min 𝐷 ℒ𝑚𝑎 𝑔 𝒙𝑠 , 𝒙𝑡 , 𝐷 𝒙𝑠 , 𝒙𝑡 = −𝔼𝒙𝑠~𝑋𝑠 log 𝐷 𝑔 𝒙𝑠 − 𝔼𝒙𝑡~𝑋𝑡 log 1 − 𝐷 𝑔 𝒙𝑡 min 𝑔 ℒ𝑚𝑎 𝑔 𝒙𝑡 , 𝐷 𝒙𝑠 , 𝒙𝑡 = −𝔼𝒙𝑡~𝑋𝑡 log 𝐷 𝑔 𝒙𝑡
10 • 条件付き分布におけるラベル間のマッチングや label shift の問題を解決 • Generator 𝑔(𝑋):周辺分布から各クラスの条件付き分布を生成 −
各クラスで生じるドメインの重複を分離 • Discriminator 𝐷(𝑋):クラス識別器 − S / T データに関する条件付き分布の不一致さを推定・最小化 提案手法 ( 3/5 ):Conditional Alignment Loss min 𝐷 ℒ𝑐𝑎𝑘 𝑔 𝒙𝑠 (𝑘), 𝒙 𝑡 (𝑘) , 𝐷 𝒙𝑠 (𝑘), 𝒙 𝑡 (𝑘) = −𝔼 𝒙𝑠 (𝑘) ~𝑋𝑠 log 𝐷 𝑔 𝒙𝑠 (𝑘) − 𝔼 𝒙𝑡 (𝑘) ~𝑋𝑡 log 1 − 𝐷 𝒙 𝑡 (𝑘) min 𝑔 ℒ𝑐𝑎𝑘 𝑔 𝒙𝑠 (𝑘), 𝒙 𝑡 (𝑘) , 𝐷 𝒙𝑠 (𝑘), 𝒙 𝑡 (𝑘) = −𝔼 𝒙𝑡 (𝑘) ~𝑋𝑡 log 𝐷 𝑔 𝒙 𝑡 (𝑘)
11 • Triplet Loss [Schroff+, CoRR2015] の変形を導入 − クラス間の分散を大きく・クラス内の分散を小さくさせる −
ミニバッチ内からアンカー・正例・負例それぞれの特徴量の KL 距離を計算 • 𝒩 ҧ 𝑔 𝒙𝑎 , 𝜎2 はガウシアン分布に従う 提案手法 ( 4/5 ):Soft Triplet Loss 𝒩 ҧ 𝑔 𝒙𝑖 ; ҧ 𝑔 𝒙𝑎 , 𝜎2 = exp( −1 𝜎2 ҧ 𝑔 𝒙𝑖 − ҧ 𝑔 𝒙𝑎 2 2) σ 𝑗=1 𝐾 exp( −1 𝜎2 ҧ 𝑔 𝒙𝑗 − ҧ 𝑔 𝒙𝑎 2 2 ) 𝑖=1 𝐾 ℒ𝑡𝑙 = 𝑎=1 𝑀 1 𝑀𝑝 − 1 𝑝=1 𝑝≠𝑎 𝑀𝑝 KL 𝒩 ҧ 𝑔 𝒙𝑎 , 𝜎2 ||𝒩 ҧ 𝑔 𝒙𝑝 , 𝜎2 − 1 𝑀𝑛 𝑛=1 𝑀𝑛 KL 𝒩 ҧ 𝑔 𝒙𝑎 , 𝜎2 ||𝒩 ҧ 𝑔 𝒙𝑛 , 𝜎2 + α𝑡𝑙 + anchors positives negatives
12 提案手法 ( 5/5 ):4つ損失関数のまとめ ℒDIRL = λ1 ℒ𝑐𝑎_𝑠𝑐 𝑓
∘ 𝑔 𝒙𝑠 , 𝒚𝑠 , 𝒙𝑡 , 𝒚𝑡 + λ2 ℒ𝑚𝑎 𝑔 𝒙𝑡 , 𝐷 𝒙𝑠 , 𝒙𝑡 + λ3 σ 𝑘=1 𝒴 ℒ𝑐𝑎𝑘 𝑔 𝒙𝑠 (𝑘), 𝒙 𝑡 (𝑘) , 𝐷 𝒙𝑠 (𝑘), 𝒙 𝑡 (𝑘) + λ4 ℒ𝑡𝑙 𝑔 𝒙𝑠 , 𝒚𝑠 , 𝒙𝑡 , 𝒚𝑡
13 • 2次元の2クラス分類問題 • Source・Target Domain はガウス分布で生成 − Source Domain:平均
−2.5, −1.5 ・ −1.0, −1.0 − Target Domain :平均 1.0, 1.0 ・ 2.5, 1.5 − 個数はそれぞれ 1000個と100個 • 各モジュールは7個のニューロンからなる 3層の隠れ層で構成 ✓ DIRL は Target Domain に関しても正しく分類 実験結果①:条件付き分布でもクラス分類可能
14 • 実機環境のデータセットが少ない状態で把持タスクができるかどうか 実験結果② (1/3) :把持タスクの Sim-to-Real の実験 𝒙𝑖 𝑆,
𝒚𝑖 𝑆 𝑖=1 𝑁𝑆 𝑁𝑆 = 20,000 ≫ 𝑁𝑅 = 212 𝒙𝑖 𝑅, 𝒚𝑖 𝑅 𝑖=1 𝑁𝑅
15 実験結果② (2/3) :把持タスクの実際の流れ ②物体認識 ②対象物体の 把持の位置を推定 ①カメラ撮影 ④ボックスに格納
16 実験結果② (3/3) :Sim-to-Real の有効性を確認 • 物体認識の精度で性能評価 ✓ 各評価指数で 最も高い精度を獲得
✓ 把持ネットワークを使用した場合 − 86.5 % の精度で拾い上げた − ネットワーク不使用で 76.2 %
17 • ドメイン適応 ( Domain Adaptation )の新たなアルゴリズム DIRL (ドメイン不変表現学習, Domain-Invariant
Representation Learning ) の提案 まとめ ✓ 敵対的学習を含む4つの損失関数の導入 ✓ Sim-to-Real の把持タスクで高い精度を獲得