Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[JSAI24]Task Success Prediction for Object Mani...
Search
Semantic Machine Intelligence Lab., Keio Univ.
PRO
May 24, 2024
Technology
0
830
[JSAI24]Task Success Prediction for Object Manipulation Based on Scene, Aligned, and Narrative Representations
Semantic Machine Intelligence Lab., Keio Univ.
PRO
May 24, 2024
Tweet
Share
More Decks by Semantic Machine Intelligence Lab., Keio Univ.
See All by Semantic Machine Intelligence Lab., Keio Univ.
Machine Intelligence for Vision, Language, and Actions
keio_smilab
PRO
0
610
[Journal club] V-DPO: Mitigating Hallucination in Large Vision Language Models via Vision-Guided Direct Preference Optimization
keio_smilab
PRO
0
140
[Journal club] Model Alignment as Prospect Theoretic Optimization
keio_smilab
PRO
0
160
[Journal club] DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
keio_smilab
PRO
0
84
[Journal club] LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
keio_smilab
PRO
2
110
Will multimodal language processing change the world?
keio_smilab
PRO
4
630
[Journal club] MOKA: Open-Vocabulary Robotic Manipulation through Mark-Based Visual Prompting
keio_smilab
PRO
0
200
[Journal club] Seeing the Unseen: Visual Common Sense for Semantic Placement
keio_smilab
PRO
0
190
[Journal club] Language-Embedded Gaussian Splats (LEGS): Incrementally Building Room-Scale Representations with a Mobile Robot
keio_smilab
PRO
0
190
Other Decks in Technology
See All in Technology
Delegating the chores of authenticating users to Keycloak
ahus1
0
140
怖くない!はじめてのClaude Code
shinya337
0
400
スタートアップに選択肢を 〜生成AIを活用したセカンダリー事業への挑戦〜
nstock
0
220
使いたいMCPサーバーはWeb APIをラップして自分で作る #QiitaBash
bengo4com
0
2k
React開発にStorybookとCopilotを導入して、爆速でUIを編集・確認する方法
yu_kod
1
280
CRE Camp #1 エンジニアリングを民主化するCREチームでありたい話
mntsq
1
130
Enhancing SaaS Product Reliability and Release Velocity through Optimized Testing Approach
ropqa
1
230
さくらのIaaS基盤のモニタリングとOpenTelemetry/OSC Hokkaido 2025
fujiwara3
3
450
How Do I Contact HP Printer Support? [Full 2025 Guide for U.S. Businesses]
harrry1211
0
120
整頓のジレンマとの戦い〜Tidy First?で振り返る事業とキャリアの歩み〜/Fighting the tidiness dilemma〜Business and Career Milestones Reflected on in Tidy First?〜
bitkey
3
16k
Geminiとv0による高速プロトタイピング
shinya337
1
270
United Airlines Customer Service– Call 1-833-341-3142 Now!
airhelp
0
170
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1031
460k
Done Done
chrislema
184
16k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
2.9k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Raft: Consensus for Rubyists
vanstee
140
7k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.4k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
How to Ace a Technical Interview
jacobian
278
23k
Transcript
慶應義塾⼤学 齋藤⼤地,◦神原元就,九曜克之,杉浦孔明 マルチモーダルLLMおよび視覚⾔語基盤モデルに基づく ⼤規模物体操作データセットにおけるタスク成功判定
概要 - 2 - ▪ タスク ▪ マニピュレータによる物体操作におけるタスク成否判定 ▪ 新規性
▪ 3種類の視覚表現を組み合わせた -Representation ▪ MLLM, 視覚⾔語基盤モデル, シングルモーダル特徴量 抽出器 ▪ 実験結果 ▪ 精度においてMLLMを含むベースライン⼿法を上回る 4x
背景︓マニピュレータの物体操作ではタスク成否判定が重要 - 3 - ▪ マニピュレータによる物体操作 Instead of this fork,
bring a spoon. 様々なサブタスク 把持中のフォークを他の場所に置く/引き出しを開ける/ フォークを把持し引き出しに置く/スプーンを引き出しから取る等 ロボットに各サブタスクの成否を適切に評価する能⼒があれば便利 失敗を検知した時点でタスクを終了することで効率・安全性が向上 https://agrist.com/archives/1873 https://www.sankei.com/article/20220309-IIRCRHG6GRPMVKT3C4NT7MPNOI/
問題設定︓物体操作に対するタスク成否判定 - 4 - ▪ マニピュレータによるTable-Top物体操作タスクにおけるタスク成否判定 • ⼊⼒︓指⽰⽂および物体操作前後の画像 • 出⼒︓ロボットが物体操作に成功した確率の予測値
Success Failure Status 0.8 0.2 “Pick up orange from white bowl”
関連研究︓LLMによるタスク成否判定は性能が不⼗分 - 5 - ⼿法 概要 SayCan [Anthony+, CoRL23] LLM及び価値関数を⽤いてサブタスクを決定
Inner Monologue [Wenlong+, CoRL23] LLMを⽤いた3種類のフィードバック機構により タスクの実⾏を決定 PaLM-E [Danny+, ICML23] 実世界の観測値を⾔語の埋め込み空間に組み込む [Huang+, CoRL22] 実世界とのインタラクションを通して成否を判定 Inner Monologue [Wenlong+, CoRL23] PaLM-E [Danny+, ICML23]
関連研究︓LLMによるタスク成否判定は性能が不⼗分 - 6 - ⼿法 概要 SayCan [Anthony+, CoRL23] LLM及び価値関数を⽤いてサブタスクを決定
Inner Monologue [Wenlong+, CoRL23] LLMを⽤いた3種類のフィードバック機構により タスクの実⾏を決定 PaLM-E [Danny+, ICML23] 実世界の観測値を⾔語の埋め込み空間に組み込む [Huang+, CoRL22] 実世界とのインタラクションを通して成否を判定 Inner Monologue [Wenlong+, CoRL23] PaLM-E [Danny+, ICML23]
画像内の情報をあらゆる粒度で抽出したい - 7 - “Pick up the orange in the
most left side from white bowl” タスクにおいて重要な点 物体操作前後の画像内において,何がどのように変化したか • 画像中に存在する物体群 • 各物体の位置関係 • 左端のオレンジの位置 • その他の物体の位置・状態
物体操作におけるタスク成否判定機構 - 8 - 1. 3種類の潜在表現を全て組み合わせた -Representationを導⼊ a. ⾊や形状などの視覚的な特徴を保持した特徴量 b.
⾃然⾔語にアラインされた特徴量 c. ⾃然⾔語を媒介として構造化された特徴量 2. -Representation Encoder 1. 物体操作前後の画像に対して -Representationのcross-attentionを 計算
λ-Representation: 各解像度において特徴量を抽出 - 9 - • ⾼次特徴量 • 中次特徴量 •
低次特徴量 • MLLM • ⾔語を媒介とした特徴量 • 参照表現・構造化された空間表現 • 視覚⾔語基盤モデル (CLIP等) • ⾔語とアラインされた画像特徴量 • シングルモーダル特徴量抽出器 (ViT等) • 詳細な視覚情報(テクスチャ等)の抽出
λ-Representation Encoder: 物体操作前後の差分に注⽬ - 10 - ▪ 3つの視覚表現を統合し -Representationを取得 ▪
物体操作前後の -Representationに対しcross-attentionを計算 ロボットが物体操作を適切に実⾏した確率の予測値 ︓transformer encoder ︓transformer decoder ︓feedforward network ︓予測ラベル 物体操作前後の特徴量の差分に注⽬: 指⽰⽂と差分はマッチングしているか︖
実験設定︓2種類のデータセットを構築 - 11 - ▪ SP-RT-1データセット • 13,915サンプルを含む実世界データセット • RT-1データセット
[Brohan+, 22]をもとに構築 ▪ SP-VLMbenchデータセット • 8,326サンプルを含むシミュレーションデータセット • VLMbench [Zheng+, NeurIPS22]をもとに構築 実世界の物体操作のための標準⼤規模データセット 物体操作タスクのための標準的なベンチマーク 1x VLMbench [Zheng+, NeurIPS22] RT-1 [Brohan+, 22] 4x
定量的結果︓2つのデータセットでベースライン⼿法を上回る - 12 - ▪ SP-RT-1及びSP-VLMbenchにおいて性能を評価 ▪ 精度において全てのベースライン尺度を上回る ⼿法 精度
[%] SP-RT-1 SP-VLMbench InstructBLIP 52.30±0.74 41.30±0.87 Gemini 64.12±1.21 56.15±2.69 GPT-4V 69.12±0.78 57.81±0.79 UNITER 69.08±1.77 68.22±0.90 Ours 74.50±1.44 78.92±0.68 Ours (extended) 80.80±0.86 ー +11.72 +10.70 MLLM
定性的結果︓物体の状態について適切に考慮 - 13 - ▪ ペットボトルは存在するが,右上でないかつ倒れてしまっている “Place water bottle upright.”
• 正解: Failure • Ours: Failure 提案⼿法は適切に評価 • GPT-4V: Success GPT-4Vは誤って評価
定性的結果︓物体の位置関係について適切に考慮 - 14 - ▪ ⾚いペンを,適切に⻘いコンテナ内に配置することができている “Drop the red pencil
into the navy container.” • 正解: Success • Ours: Success 提案⼿法は適切に評価 • GPT-4V: Failure GPT-4Vは誤って評価
Ablation study︓ -Representationの有効性を調査 - 15 - ▪ SP-RT-1データセットにおいて,低次特徴量 (SR), 中次特徴量
(AR), ⾼次 特徴量(NR)の性能への寄与を調査 ▪ NRが最も性能向上へ寄与 Model SR AR NR Accuracy [%] SP-RT-1 SP-VLMbench (i) ✔ ✔ 73.30±1.27 75.80±0.62 (ii) ✔ ✔ 72.11±1.19 74.44±1.44 (iii) ✔ ✔ 72.02±1.55 73.74±1.84 (iv) ✔ ✔ ✔ 74.50±1.44 78.92±0.68 +2.48 +5.18
実機実験︓ゼロショット転移設定においても有効性を確認 - 16 - 4x HSRを⽤いてTable-Top物体操作,タスク成否予測を実⾏ ⼿法 精度 [%] Ours
(extended) 59±1.9 “move the light blue cup to the left front”: Success “move the light blue cup to the right front area”: Failure J
まとめ - 17 - ▪ タスク ▪ マニピュレータによる物体操作におけるタスク成否判定 ▪ 新規性
▪ 3種類の視覚表現を組み合わせた -Representation ▪ MLLM, 視覚⾔語基盤モデル, シングルモーダル特徴量 抽出器 ▪ 実験結果 ▪ 精度においてMLLMを含むベースライン⼿法を上回る 論⽂PDF 4x
定性的結果︓ いくつかのサンプルではオクルージョンにより予測が困難 - 20 - ▪ 7upの⽸は配置時の衝撃で倒れているが,アームが被っている • 正解: Failure
• Ours: Success “Pick 7up can from bottom drawer and place on counter.”
エラー分析︓物体についての理解が不⾜ - 21 - エラー #エラー (1) Multimodal Language Comprehension
Error 45 (2) Occlusion 26 (3) Ambiguous Situation 9 (4) Narrative Hallucination 9 (5) Out-of-Frame 6 (6) Ambiguous Instruction 5 計 100 ・マルチモーダル⾔語理解について性能が不⼗分 ・物体についての理解が重要 ex. キャプション⽣成的アプローチ