Upgrade to Pro — share decks privately, control downloads, hide ads and more …

主成分分析による3次元点群の形状解析

Avatar for Kenta Itakura Kenta Itakura
September 25, 2025

 主成分分析による3次元点群の形状解析

Avatar for Kenta Itakura

Kenta Itakura

September 25, 2025
Tweet

More Decks by Kenta Itakura

Other Decks in Technology

Transcript

  1. 主成分分析(PCA: Principal Component Analysis)の概要 2  多次元データの主な変動方向を抽出する手法 対象の小豆島の点群 • 左図:データの直線性が低くあらゆ

    る方向に広がっている • 右図:データの直線性が高く第1主 成分で元データの大半を説明でき る  共分散行列の固有値・固有ベクトルを計算し、データの広がりの方向を抽出  点群に適用することで、局所的な形状の特徴を数値で捉えられる 2次元データにおけるPCAの概要図
  2. 4 3次元点群におけるPCAの計算 2. データを中心化し共分散行列を求める b. データの中心化 c. 共分散行列の計算 例えば5点の3次元点群の場合 について下記のように計算でき、

    が求まる 共分散行列の各要素は以下の通りとなる • 𝑘: サンプル番号 • 𝑖, 𝑗: 特徴量の番号 • 𝑖と𝑗は入れ替えても値が同じになるため
  3. 先に求めていた共分散行列 より 写像後の共分散行列は、 転置の性質 より、 5 3次元点群におけるPCAの計算 3. 分散が最大になる方向を基準に新しい座標 を作成

    (固有ベクトルを とする) 4. 写像後の分散が最大となる固有ベクトル を求める a. 写像後の共分散行列を求める 解を一意に定めるため の制約を設ける ( が1.1倍や1.2倍などの場合も解となることを防ぐ) より、
  4. この式から となり、これを解けばよい(固有方程式) 6 3次元点群におけるPCAの計算 4. 写像後の分散が最大となる固有ベクトル を求める b. ラグランジュ乗数法を用いて解く ◆

    ラグランジュ乗数法: それぞれの変数で微分して0になる点を調べることで 解を得る手法。拘束と目的となる値がある場合に有効 最大化する対象: 拘束条件: ラグランジュ方程式を立てる ◆ ラグランジュ方程式: 最大化したい値から、拘束条件にラグランジュ乗数を かけて引き算したもの これを各変数で偏微分する 対象行列 の二次形式 を微分すると となる性質より、
  5. 7 3次元点群におけるPCAの計算 4. 写像後の分散が最大となる固有ベクトル を求める c. 固有値固有ベクトルを求める 固有方程式を展開する ( のみスカラーのため、行列と演算を行うために単位行列

    を用いる) となる解を探すため …(式1) 求めた を式(1)に代入し、各 に対応する固有ベクトルを求める ◆ det(A): 行列Aの行列式で、1つのスカラー値を表す 3次元点群データの場合、3つの固有値が求まる 固有値: 固有ベクトル:
  6. 8 3次元点群データにおけるPCAの流れ(まとめ) • 各点のk近傍点を取得 • 近傍点群の共分散行列を計算 • 固有値・固有ベクトルを取得 k =

    5近傍点 k = 15近傍点 PC1 PC2 PC3 近傍点の数が異なると主成分軸も異なる PC1 PC2 PC3 ◆ 主成分分析における固有値と固有ベクトル: データのばらつきの方向とその重要度 例)点が平面状に分布している場合 • 第1・第2主成分は平面内の方向 • 第3主成分は平面からの微小なズレ →主成分分析で得られた固有値・固有ベクトルから 3次元構造の特徴を取得できる
  7. 指標 特徴 1に近いほど直線的 1に近いほど平面的 1に近いほど分散している 例 道路の縁石、鉄道のレール 屋根、建物の壁面 樹木の葉、球状の物体 固有値からわかる幾何学的特徴

    9  固有値の大小関係で形状を分類 構造 固有値の関係 例 線形 𝜆1 ≫ 𝜆2 ≫ 𝜆3 電線、枝など 平面 𝜆1 ≈ 𝜆2 ≫ 𝜆3 地面、壁など 𝜆1 ≈ 𝜆2 ≈ 𝜆3 ノイズ、葉、球など  代表的な指標 Linearity = (𝜆1−𝜆2) 𝜆1 Planarity = (𝜆2−𝜆3) 𝜆1 Scattering = 𝜆3 𝜆1
  8. 10 3次元点群データにおけるLinearityの例  球体状の点群の場合 • 分布が一定の方向を持たない → 低い直線性 k =

    50近傍点 k = 50近傍点 k = 20近傍点 • より直線的な領域ほどLinearityが高くなる • ノイズがあると直線性が低下 • 近傍点数を減らすと直線性増す  直線的な点群の場合
  9. ◆ 壁面 PCAと法線ベクトルの関係 12  法線ベクトル PCAによって得られた固有ベクトルのうち、最小固有値𝜆3 に対応するベクトル → 点群が広がっていない方向

    • 壁面の法線ベクトル:地面と平行なことが多い • 地面の法線ベクトル:地面と垂直なことが多い • 植生の法線ベクトル:特定の方向を持たないことが多い 法線ベクトル ◆ 地面 ◆ 植生