Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
画像処理論セミナー7-1-3
Search
Kuno Ayana
July 02, 2020
Education
0
17
画像処理論セミナー7-1-3
Kuno Ayana
July 02, 2020
Tweet
Share
More Decks by Kuno Ayana
See All by Kuno Ayana
Flutterを言い訳にしない!アプリの使い心地改善テクニック5選🔥
kno3a87
3
610
iOS 18 がやってきた!
kno3a87
1
180
おうちハッカソン #2
kno3a87
0
120
ミクアカ成果報告会
kno3a87
0
25
SXSW2021
kno3a87
0
40
ミクアカ中間発表会
kno3a87
0
15
大学院進学ガイダンス
kno3a87
0
78
内定者自己紹介LT
kno3a87
0
71
画像処理論セミナー7-1,2
kno3a87
0
15
Other Decks in Education
See All in Education
Unraveling JavaScript Prototypes
debug_mode
0
160
あきた地域課題解決インターンMarch2025
toyodome
0
310
環境・社会理工学院 建築学系 大学院入試について|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
190
オンラインゆっくり相談室ってなに?
ytapples613
PRO
0
260
Human Perception and Colour Theory - Lecture 2 - Information Visualisation (4019538FNR)
signer
PRO
0
2.3k
付箋を使ったカラオケでワイワイしましょう / Scrum Fest Okinawa 2024
bonbon0605
0
140
2024年度秋学期 統計学 第12回 分布の平均を推測する - 区間推定 (2024. 12. 11)
akiraasano
PRO
0
130
OnShapeの紹介-概要編
shiba_8ro
0
110
Web 2.0 Patterns and Technologies - Lecture 8 - Web Technologies (1019888BNR)
signer
PRO
0
2.6k
1216
cbtlibrary
0
280
Web Search and SEO - Lecture 10 - Web Technologies (1019888BNR)
signer
PRO
2
2.6k
プログラミング基礎#4(名古屋造形大学)
yusk1450
PRO
0
120
Featured
See All Featured
Building Applications with DynamoDB
mza
93
6.2k
Faster Mobile Websites
deanohume
306
31k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
The Invisible Side of Design
smashingmag
299
50k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.3k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Site-Speed That Sticks
csswizardry
4
410
Docker and Python
trallard
44
3.3k
The Pragmatic Product Professional
lauravandoore
32
6.4k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
30
4.6k
Transcript
,VOP"ZBOB σΟδλϧը૾ॲཧ ٯϑΟϧλɾΟʔφϑΟϧλʹΑΔը૾෮ݩ
લճͷ෮़ɿ΅͚ɾͿΕͱ ࣍ݩσϧλؔ δ(x, y) ྼԽը૾ g(x, y) ݪը૾ f(x, y)
લճͷ෮़ɿ֦͕ΓؔͷϞσϧԽ ΅͚ͷ֦͕ΓؔˠΨεͱۙࣅ ͿΕͷ֦͕ΓؔˠͿΕͷํВʹͷΈ෯XʹҰ࣍ݩͰ͕͍ͬͯΔؔͱۙࣅ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ g(x, y) = f(x, y) * h(x, y) ྼԽը૾
ݪը૾ ֦͕Γؔ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ g(x, y) = f(x, y) * h(x, y) ྼԽը૾
ݪը૾ G(u, v) = F(u, v)H(u, v) ϑʔϦΤม 'ྼԽը૾ 'ݪը૾ ϑΟϧλ ֦͕Γؔ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ K(u, v) K(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
1 H(u, v) ٯϑΟϧλ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ 1 H(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
1 H(u, v) ٯϑΟϧλ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ 1 H(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v) 'ྼԽը૾ 'ݪը૾ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ
1 H(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v) 'ྼԽը૾ 'ݪը૾ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ
1 H(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v) 'ྼԽը૾ 'ݪը૾ ϑʔϦΤٯม g(x,
y) = f(x, y) ྼԽը૾ ݪը૾ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ 1 H(u, v)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
1 H(u, v) ٯϑΟϧλ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ ͘͠ݶΓͳ͘ʹ͍ۙͩͬͨΒʁ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) 'ྼԽը૾ 'ݪը૾ ϑΟϧλ
1 H(u, v) ٯϑΟϧλ ֦͕Γ͕ؔطͷ߹ ٯϑΟϧλΛྼԽը૾ʹదԠ͢Δ͜ͱͰݪը૾͕ٻ·Δ ͘͠ݶΓͳ͘ʹ͍ۙͩͬͨΒʁ ൃࢄͯ͠͠·͏ʂ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ G(u, v) = F(u, v)H(u, v) + N(u, v)
ൃࢄ͢ΔͱϊΠζ͕૿෯ͯ͠͠·͏ ˠ) V W ͕ʹ͍ۙͱ͖ʹൃࢄ͠ͳ͍ϑΟϧλΛߟ͑Δඞཁ͕͋Δ 'ϊΠζ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw
(u, v) ̂ f(x, y) f(x, y)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + |N(u, v)|2 /|F(u, v)|2 ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y)
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + |N(u, v)|2 /|F(u, v)|2 ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y) ΟʔφϑΟϧλ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + |N(u, v)|2 /|F(u, v)|2 ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y) ϊΠζ͕ͷ߹
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + |N(u, v)|2 /|F(u, v)|2 ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y) ϊΠζ͕ͷ߹ ͕͜͜ʹͳΔͷͰ ٯϑΟϧλͱಉ༷ʹΔ
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + |N(u, v)|2 /|F(u, v)|2 ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y) ͍͍ͩͨϊΠζݪը૾ະ దͳఆϵΛஔ͘͜ͱ͕ଟ͍
ը૾Λ෮ݩ͢ΔۭؒϑΟϧλΛߟ͑Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ෮ݩը૾ɹɹɹͱݪը૾ɹɹɹͷޡࠩΛ࠷খʹ͢ΔΑ͏ͳϑΟϧλ Kw (u, v) ̂ f(x, y) f(x, y)
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ ൃࢄͯ͠͠·͍ըૉ͕ൃࢄ͍ͯ͠Δ θϩΛؚΜͰ͍ΔͨΊ
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ ൃࢄͯ͠͠·͍ըૉ͕ൃࢄ͍ͯ͠Δ θϩΛؚΜͰ͍ΔͨΊ ൃࢄ͍ͯ͠ͳ͍
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ Ӷʹ෮ݩ͞ΕΔ ϊΠζ૿෯͢Δ ϊΠζ૿෯͞Εͳ͍ ΅͚ɾͿΕͷ෮ݩ͕͍
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ Ӷʹ෮ݩ͞ΕΔ ϊΠζ૿෯͢Δ ϊΠζ૿෯͞Εͳ͍ ΅͚ɾͿΕͷ෮ݩ͕͍ ϵ͕େ͖͘ͳΔͱ͕େ͖͘ͳΔͷͰ
ϵΛมԽͤ͞Δ Kw (u, v) = 1 H(u, v) |H(u, v)|2
|H(u, v)|2 + Γ ਤ Ӷʹ෮ݩ͞ΕΔ ϊΠζ૿෯͢Δ ϊΠζ૿෯͞Εͳ͍ ΅͚ɾͿΕͷ෮ݩ͕͍ ϵ͕େ͖͘ͳΔͱ͕େ͖͘ͳΔͷͰ ͜͜ͷ͕খ͘͞ͳͬͯ͋·ΓϑΟϧλ͕ޮ͔ͳ͘ͳΔ