jgm2013

 jgm2013

7382f7fe30561274624635116513ca37?s=128

Leonardo Collado-Torres

October 07, 2013
Tweet

Transcript

  1. 1.

    Fast differential expression analysis annotation-agnostic across groups with biological replicates

    Leonardo Collado-Torres tweet: @fellgernon blog: tinyurl.com/FellBit
  2. 2.

    @fellgernon #JGM2013 Field overview Ultimate Goal What is the biological

    (genomic) cause, if any, of X disease? Currently What are the most likely genomic difference(s) between two+ groups?
  3. 3.

    @fellgernon #JGM2013 Tools • Molecular biology: reverse transcriptase • High-throughput

    sequencing • $$ and – > Large number of biological replicates • Computers • Biostatistics Image: http://bit.ly/15MVhSU
  4. 6.

    @fellgernon #JGM2013 Split by chromosome and filter n samples à

    ~760 million nt Rows with at least 1 sample with coverage > 5
  5. 11.

    @fellgernon #JGM2013 How can we make it fast? • Avoid

    Input/Output as much as possible • Work by chromosome • Reduce memory – Run Length Encoding (IRanges::Rle) 0000111111222 = (0, 1, 2) (4, 6, 3) • Use multiple cores (parallel::mclapply) – Split data to use cores efficiently • Calculate F-stats using Rcpp (Has + and -)
  6. 12.

    @fellgernon #JGM2013 Finding candidate DERs: example dataRegions 450 500 550

    600 segs 450 500 550 600 pieces 450 500 550 600 ders 450 500 550 600 450 500 550 600 0.0 1.0 2.0 Index f
  7. 18.

    @fellgernon #JGM2013 Example: re-cap dataRegions 450 500 550 600 segs

    450 500 550 600 pieces 450 500 550 600 ders 450 500 550 600 450 500 550 600 0.0 1.0 2.0 Index f
  8. 19.

    @fellgernon #JGM2013 Example: result Cluster for region with name COL6A1

    and q-value 0.8256 chr21 chr21 Coverage 1 2 group CEU YRI Mean coverage 0.125 0.500 group CEU YRI Regions significantQval TRUE FALSE tx_name (gene_id) tx_name(gene_id) 47411000 47411200 47411400 47411600
  9. 20.

    @fellgernon #JGM2013 Public datasets • derfinderExample: – Blood CEU vs

    YRI non-related individuals • derHippo: – Brain hippocampus from cocaine addicts, alcohol addicts, and controls • derSnyder: – Michael Snyder time course (~1 year): 2 x diseases, recovery & healthy periods • derStem: – 5 stem cell types, 2 replicates per group
  10. 21.

    @fellgernon #JGM2013 Time and memory needed: derSnyder • Load &

    filter data: 10 cores with mclapply 1hr 15min, 177 GB • Make models: 20 min, 52 GB • Analysis: 10 permutations, 4 cores each chr, total 59 mins – chr1 41 min, 46 GB • Merging: 30 min, 22 GB • Report: 27 min, 17 GB • Total wallclock time: 3 hr 46 min 20 samples
  11. 22.

    @fellgernon #JGM2013 A richer data set: 69 samples • Load

    raw data: each chr, total 1hr 28 min – chr1 1hr 28 min, 18 GB – Merge 1hr 7 min, 67 GB • Filter data: each chr, total 12 min – chr1 12 min, 10 GB – Merge 1hr, 62 GB • Make models: 1 hr 49 min, 234 GB • Analysis: 0 permutations, 8 cores each chr, 52 min (1 hr 41 min) – chr1 49 min, 258 GB, had to run twice • Merging: 1 hr 6 min, 46 GB • Report: 1hr 29 min, 45 GB • Total wallclock time: 9 hr 3 min (9 hr 52 min)
  12. 23.

    @fellgernon #JGM2013 Counts: derSnyder • Load & filter data: 10

    cores with mclapply 1hr 15min, 177 GB • Create count table: 26 min, 24 GB • Total wallclock time: 1 hr 41 min 20 samples
  13. 24.

    @fellgernon #JGM2013 Counts with richer data set: 69 samples •

    Load raw data: each chr, total 1hr 28 min – chr1 1hr 28 min, 18 GB – Merge 1hr 7 min, 67 GB • Count tables: 53 min, 53 GB • Total wallclock time: 3 hr 3 min
  14. 31.

    @fellgernon #JGM2013 Coverage adjustment? • • • • • •

    • • • • • • • • • • • • • • 6.0e+07 8.0e+07 1.0e+08 1.2e+08 1.4e+08 1.6e+08 1.8e+08 6.0e+08 8.0e+08 1.0e+09 1.2e+09 1.4e+09 1.6e+09 chr 1 total Cov vs Cov < quantile 0.9 Coverage at bases < quantile 0.9 Total coverage 0to186 186to294 294to322 322to400 • • • • • • • • • • • • • • • • • • • • 1.5e+07 2.0e+07 2.5e+07 3.0e+07 3.5e+07 4.0e+07 6.0e+08 8.0e+08 1.0e+09 1.2e+09 1.4e+09 1.6e+09 chr 1 total Cov vs # bases with data Number bases with Cov > 0 Total coverage 0to186 186to294 294to322 322to400 derSnyder Similar to metagenomeSeq::cumNorm
  15. 33.

    @fellgernon #JGM2013 Acknowledgements Leek Group Jeffrey Leek Alyssa Frazee Hopkins

    Sarven Sabunciyan Ben Langmead Lieber Institute (LIBD) Andrew Jaffe Harvard Rafael Irizarry Funding NIH (Aug 2012- July 2013) LIBD (Aug 2013 - now) CONACyT México