Upgrade to Pro — share decks privately, control downloads, hide ads and more …

從歐盟MARINET海洋能FP7計畫經驗看台灣海洋能之發展 - 楊瑞源 副教授

從歐盟MARINET海洋能FP7計畫經驗看台灣海洋能之發展 - 楊瑞源 副教授

從歐盟MARINET海洋能FP7計畫經驗看台灣海洋能之發展 - 楊瑞源 副教授

learnenergy

March 08, 2019
Tweet

More Decks by learnenergy

Other Decks in Education

Transcript

  1. Research & Services Ocean Energy & Coastal Engineering  Ocean

    Energy Resource assessment  Wave Energy Physical Device model testing  Field Testing and measurements - Wave, Tidal, Coastal  Computational Fluid dynamics – Wave & Tidal  Numerical modelling, Wave, Tidal & Coastal processes  Analytical Modelling , Wave, Tidal & Coastal processes  Electrical, Power Electronics and Control Systems  Instrumentation and Data acquisition  PTO – Turbomachines & Hydraulics  Economic Model  Environment and Marine Law
  2. Research Facilities @ HMRC  Tank Testing – 3D Wave

    Basin & Flume  Physical modelling, design & construct  Electrical & Pneumatic Test rigs  Mathematical modelling - Hydrodynamics, Pneumatic, Electrical, Control  Computational Fluid Dynamics 64 node supercomputer cluster  Data validation and analysis
  3. Tanks  Flume  26m x 3m x 1m deep

     1 hydraulic paddle (Moog)  Active absorption  Awasys Software  1:8 Beach  250mm waves  0.5 – 3 seconds  Mono and Panchromatic  Basin  25m x 18m x 1m deep  40 electric paddle (Edinburgh Designs)  Active absorption  1:10 Beach  200mm waves  0.5 – 2.5 seconds  Mono and Panchromatic (long and short crested) + Bullseye
  4. New Tank  35m x 12m x 3m deep 

    12 electric paddle (Edinburgh Designs)  Active absorption  Multiple Beach  1m waves  0.5 – 3 seconds  Mono and Panchromatic (long and short crested)
  5. Slip Ring Induction Generator Torque Transducer Induction Motor 4 Speed

    Gearbox Flywheel Rotating PTO Test Rig (1/3 Scale)  26kW Inverter Controlled Dynamometer  4 modes of Generator setup (eg DFIG, wound rotor etc)  8 Stages of Inertia  Grid Connected, Various stages of Cable / OHead emulation  Islanded mode available  Full control of input Tq and Speed (selectable or from loaded time trace)  Full control of Generator reaction  PLC control and full OPC DAQ system
  6.  Sinusoidal motion  Stroke: 900mm  Force: 15,000 N

     Max velocity: 900mm/s  Power: ~ 20 kW Linear PTO Test Rig (1/3 Scale)
  7. IPS Buoy Kaimei Teamwork Technology AWS 1 Hydam Technology MWP

    WavePlane EcoBuoy B2D2 Waveberg Rock OWC Bull OWC Wavebob AquaBuOY SPERboy Wave Dragon Azores OWC Oceanlinx OE Buoy
  8. Cunnamore Run-up Study Wexford Harbour Tidal Flows Floating Wind turbines

    Greencastle Harbour Model Rosslare Erosion Study Floating Structure stability Tests Wexford Harbour Wave Study Erosion Protection armour units Petten Dyke model Commercial Coastal Projects @ HMRC
  9. Funding Sources  EU (Framework Programmes)  Marine Inst Bluepower

    Initiative  Charles Parsons Energy Research (SFI)  IRCSET  HEA (Capital)  DCENR (Capital)  Commercial Contracts  Enterprise Ireland – Innovation Part, ILRP  Sustainable Energy Ireland - OEDU
  10. EU Projects  FP6 WavePLAM – Non technical barriers Ocean

    Energy  FP7 Cores – Coordinator – New components and concepts Ocean Renewable Energy Systems  FP7 EquiMar – Partner – Equitable testing Ocean Energy  FP7 Wavetrain II – Host Partner  FP6 ENCORA – European Network for Coastal Research  FP 6 Con Science – Coastal Research  FP7 MARINA – Partner Wind/Wave Platform Integration  FP7 ORECCA – Coordinated Action Wind/Wave Integration  FP7 – MariNet – Coordinator on Proposal, Large scale Ocean Energy Infrastructure
  11. Lab Scale Wave & Tidal Test HMRC ¼ Scale Wave

    Test Site Marine Institute Full Scale Wave Test Site SEI OEDU Full Scale Tidal Test Site SEI OEDU 1/10 Scale Tidal Test Site QUB Irelands Marine Energy Infrastructure
  12. Naval Base Maritime College Atlantic Gateway Port of Cork Haulbowline

    Island UCC Atlantic Gateway Institute €16million
  13. Content  Strategy for renewable energy development in Taiwan. 

    Offshore Wind Energy  Wave Energy  Ocean Current Energy  Conclusion
  14. Renewable energy Long-Term Targets in Taiwan Source:Bureau of Energy, Ministry

    of Economic Affairs, Taiwan Renewable Energy 2010 2015 2020 2025 Solar 21 320 570 800 Wind 284 Ocean 200 Geothermal 50 Incinerator 740 850 1030 Renewable Energy 2010 2015 2020 2025 Solar 21 320 570 800 Wind 284 Ocean 200 Geothermal 50 Incinerator 740 850 1030
  15. Targets of Ocean Energy in Taiwan Proposed by Taiwan Ocean

    Research Institute(TORI), National Applied Research Laboratories(NARL) ,Taiwan
  16. Wave Shoreline Near-shore Far-shore Tidal Range Current Ocean Power Technologies

    Heaving Powerbuoy - 50 kW © OPT Technology Progress
  17. Wave Shoreline Near-shore Far-shore Tidal Range Current Aquamarine Oyster seabed

    surge converter – 300 kW © Aquamarine Technology Progress
  18. At NaREC in the NE there is a 1/10th scale

    wave and tidal test facility and blade test centre UK development infrastructure There are plans for a commercial Wave Hub in the SW with installation in Spring 2010
  19.  2km from shore  50m water depth  Four

    berths  Atlantic waves regime  25kW/m + energy level  20m+ peak wave EMEC Wave Test Site UK development infrastructure © EMEC
  20.  5 Berths 10-50m  Grid connected  3.5m/s flow

     Sheltered area EMEC Tidal Test Site © EMEC UK development infrastructure
  21. 40 Wave Energy Potential in Taiwan Taiwan's surrounding ocean affected

    by the northeast monsoon. In northeast sea area of Taiwan, the wave power density averages about 13kw/m. Northeast sea area, offshore of Oluanpi, Hualien and Penghu have the potential of wave power generation. Ref: The Executive Yuan strategy meeting of the Industrial Technology (2007). Estimated by ITRI (2006).
  22. Super Tank  Size:  Length×Width×Depth = 300m×5m×5m  Dry-back

    system. Piston type.  Active wave absorption.  Capability:  Irregular waves up to 1.0m.  Future requirement up to 1.5m.
  23. Mid-size Observation Flume  Size:  Length×Width×Depth = 200m×2m×2m 

    3 Observation glasses.  Capability:  Irregular waves up to 0.6m.
  24. Near-shore Basin  Size:  Length×Width×Depth = 150m×60m×1.5m  10

    units of long crest wave generators  Capability:  Irregular waves up to 0.3m.
  25. Instruments and Data Acquisition / Analysis System  To design

    and build state-of-the-art measurement instruments by ourselves.  To meet all specifications. Wave gauges Multi-Node Data Acquisition System Charge Controller 電 瓶 直流/交流轉換器 I P C 工業 個人 電腦 GSM行動電話 +數據機 DAS 卡 波高 風速 風向 溫度 …... 太陽能板 電源線 信號線 P C INTERNET網路 Field Monitoring & Transmitting System
  26. test runs turbine guide plate concave type protrude type 24

    slice case5 case1 case2 case6 30 slice protrude type concave type 60 slice concave type protrude type case3 case4 case2 case3 case4 case1 case5 case6 Wave generating system test— model 1 test runs
  27. Wave generating system test— model 2 sketch of OFB system

    major parts floating body piston system   constant pressure storage system blade power generation
  28. Experimental Process Phase 1 Phase 2 2008~2009 2005 2006 2007

    1st step ufo-type float 3rd step cylinder-type float ( 4 pistons+pressure storage) 2nd step cylinder-type float 4th step cylinder-type float (1 piston+pressure storage+power)
  29. Phase 1 – wave generation test Floating body weight :98

    kg External load:123.2 kg Total weight:221.2 kg Floating body volume :0.27 m3 Floating body density :0.819 g/cm3 Floating body weight:98 kg Floating body volume:0.27 m3 Floating body density:0.363 g/cm3
  30. Phase 2 — wave generation test Floating body weight :300

    kg External load :3000 kg Total weight:3300 kg Floating body volume :6.1 m3 Floating body density :0.54 g/cm3 Floating body weight :300 kg Floating body volume :6.1 m3 Floating body density :0.05 g/cm3
  31. 61 Candidate Site and Virtual Image of TaiCOAST 61 由永安漁港南側停車場向南望

    笨港灣 日字石滬 由中段礫灘海堤向南望 海巡廢棄哨所 Pier for studying: Storm surge Wave and Tide Sediment transport Coast erosion
  32. 62 永安漁港 Yong An Harbor Test Berth B Test Berth

    A Pier Substation & Met station Candidate Wave Test Site Sketch Map
  33. Main Topics  Wave Energy Test Site Selection  Wave

    Energy Test Site Mooring System Design  Power Quality Measurement and Analysis System  Offshore Grids Planning  Real-time Weather Observation System Planning  Wave Energy Test Site O & M Planning 63
  34. HSIN CHU TAOYUA N TAIPEI I LAN Hsinchu Taipei Chilung

    NAN TOU YUN LIN CHANG HWA MIAO LI TAI CHUNG Taichung TAI TUNG HUA LIEN PING TUNG KAO HSIUNG TAI NAN CHIA YI Chia i Tainan Kaohsiung Liuchiu yu PENG HU HSIAN KINMAN HSIEN HSIN CHU TAOYUA N TAIPEI I LAN Hsinchu Taipei Chilung NAN TOU YUN LIN CHANG HWA MIAO LI TAI CHUNG Taichung TAI TUNG HUA LIEN PING TUNG KAO HSIUNG TAI NAN CHIA YI Chia i Tainan Kaohsiung Liuchiu yu PENG HU HSIAN KINMAN HSIEN 台灣四周海域潮流潛勢能分佈
  35. Fundament al Research Concept design/Patents / Performance Analysis Optimal Design

    Numerical analysis setup Large-Scale model SOP set up Tank test Generation test Reliability test Quasi-full scale model Wave Energy Test Site/Patents chain Prototypes Wave Energy Test Site Wave Energy Farm Commercial Grid connect O&M Modify Conclusion
  36. 海洋能發電技術產業發展模式 •海洋環境與海洋能源基礎研究 •海洋能發電設備/系統技術研發 •系統效能測試平台(實驗室) •海洋能發電生態與環境影響評估 •經濟、環境與社會衝擊評估 產研合作 育成 中心 產業

    發展 • 台灣海域潛能長期觀測 設備佈放及資料庫建置 • 現有海洋能利用技術綜 合評估與最佳化 • 海洋能利用測試場選址 與觀測系統建置 • 海洋能發電系統技術開 發與整合 • 人才培育與國際合作 • 海洋能實海域測試場建 置與營運 • 海洋能發電系統技術開 發現與系統驗證 • 海上施工/海事工程技術 能量發展(繫泊、定位等) • 系統動力調節、離岸電 力傳輸與儲存技術開發 • 國際技術引進 研究機構 前瞻產業 大專院校 人才 交流
  37. 82 綠島固定式溫差溫差發電  成本:8.3 元/度  現況:工研院開發 500 W 實

    驗系統 海事工程、維運、併網成本增加 (風險提高) 海 事 工 程 、 維 運 、 併 網 成 本 增 加 ( 風 險 提 高 ) 溫差發電取水口 錨碇浮動海流發電  成本:(--元/度)  水深:300 公尺以上  距綠島 2 ~ 4 公里  現況:概念設計階段、 正進行潛能觀測 澎湖水道潮流發電*  成本:10 ~ 13 元/ 度  水深:65 ~ 90 公尺  離岸:16 ~ 28 公里  現況:完成潛能與 可行性評估 龍洞離岸波浪發電  成本:18 元/度  水深:30 ~ 40 公尺  離岸:1.6公里  現況:工研院擬整機引進、 進行示範計畫 風鼓式海浪發電機  工研院能資所發展雛型 機  94年成大水工試驗所及 立上公司 7 kW 雛型機 核四防波浪堤發電  成本:13.8 元/度  原規劃技術引進、進行示 範計畫,基於經濟效益考 量,並未實施 海洋能發電成本效益評估 煤炭0.91元/度 石油1.93元/度 天然氣2.16元/度 核能0.76元/度
  38. 生態與環保 This work is establishing the principal ecological consequences of

    the extraction of tidal and wave energy in coastal and offshore zones. Population disturbance monitoring over 5 years Behavioural changes in local distribution patterns MARINE