Adaptive experimental design using the propensity score. Journal of Business and Economic Statistics, 29(1):96–108. • Imbens and Rubin. Causal Inference for Statistics, Social, and Biomedical Sciences, 2015. • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5):688. • Neyman, J. (1923). Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes. Statistical Science, 5:463–472. • Hamilton, J. (1994). Time series analysis. Princeton Univ. Press, Princeton, NJ. • Chow, S.-C. and Chang, M. (2011). Adaptive Design Methods in Clinical Trials. Chapman and Hall/CRC, 2 edition. • Yang, Y. and Zhu, D. (2002). Randomized allocation with nonparametric es- timation for a multi-armed bandit problem with covariates. Ann. Statist., 30(1):100–121. 39
Intervals for Policy Evaluation in Adaptive Experiments, arXiv. • Kato, Ishihara, Honda, and Narita (2020). Adaptive Experimental Design for Efficient Treatment Effect Estimation: Randomized Allocation via Contextual Bandit Algorithm, arXiv. • Delyon and Portier (2018). Asymptotic optimality of adaptive importance sampling, NeuIPS. • Johari, R., Pekelis, L., and Walsh, D. J. Always valid inference: Bringing sequential analysis to a/b testing, arXiv. • Zhao, S., Zhou, E., Sabharwal, A., and Ermon, S. Adaptive concentration inequalities for sequential decision problems, NeurIPS. • Balsubramani, A. and Ramdas, A. Sequential nonparametric testing with the law of the iterated logarithm, UAI. • Balsubramani, A. Sharp finite-time iterated-logarithm martingale concentration. arXiv 40