Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
プレゼンミニレクチャー
Search
中尾将志
January 16, 2020
Education
0
190
プレゼンミニレクチャー
2020/01/16
蒲田から大阪経済大学へのミニレクチャー(30分コース)
中尾将志
January 16, 2020
Tweet
Share
More Decks by 中尾将志
See All by 中尾将志
プレゼン入門20230714
masashinakao
0
170
プレゼン入門
masashinakao
0
150
アジャイル研修事例編2022
masashinakao
0
120
インタビュー研修
masashinakao
0
110
プレゼンテーション研修
masashinakao
0
110
プレゼンテーションTIPS50
masashinakao
0
480
R1GPの取り組み
masashinakao
1
210
オンラインコミュニケーションポイント100選
masashinakao
0
940
プレゼンミニレクチャー2020
masashinakao
0
220
Other Decks in Education
See All in Education
Dashboards - Lecture 11 - Information Visualisation (4019538FNR)
signer
PRO
1
2k
Tangible, Embedded and Embodied Interaction - Lecture 7 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.7k
Constructing a Custom TeX Ecosystem for Educational Institutions—Beyond Academic Typesetting
doratex
1
9.3k
OpenSourceSummitJapanを運営してみた話
kujiraitakahiro
0
700
ビジネスモデル理解
takenawa
0
5.2k
系統性を意識したプログラミング教育~ガチャを実装しよう~
asial_edu
0
400
Implicit and Cross-Device Interaction - Lecture 10 - Next Generation User Interfaces (4018166FNR)
signer
PRO
2
1.7k
2025.05.10 技術書とVoicyとわたし #RPALT
kaitou
1
210
Data Physicalisation - Lecture 9 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
430
2025/06/05_読み漁り学習
nag8
0
140
(キラキラ)人事教育担当のつらみ~教育担当として知っておくポイント~
masakiokuda
0
100
Gaps in Therapy in IBD - IBDInnovate 2025 CCF
higgi13425
0
480
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
930
YesSQL, Process and Tooling at Scale
rocio
173
14k
Writing Fast Ruby
sferik
628
62k
Automating Front-end Workflow
addyosmani
1370
200k
Become a Pro
speakerdeck
PRO
28
5.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.8k
Designing for Performance
lara
609
69k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Docker and Python
trallard
44
3.4k
Transcript
ϓϨθϯ ϛχϨΫνϟʔ 2020/1/16
தඌকࢤ ͳ͔͓·͞͠ ˓อݥצఆܥγεςϜ ˓ۜߦϦεΫཧύοέʔδ ˓อݥܖཧύοέʔδ ˓ΞʔΩςΫτɺඪ४ԽɺϚʔέςΟϯ άɺ৫σβΠϯɺϑΝγϦςʔλʔ
தඌ কࢤʢͳ͔͓ ·͞͠ʣ ɾۚ༥γεςϜΤϯδχΞ ➡ ۚ༥γεςϜۤख ɾྲྀ͠ͷφϨοδϒϩʔΧʔ ➡ ηϛφʔϫʔΫγϣοϓ ɾস͏αΠΤϯείϛϡχέʔλʔ
➡ ܦӦֶɺλΠϜϚγϯɺ৫
Ϟοτʔ ·͡Ίʹ;·͡Ί
ͲΜͳ׆ಈʁ
None
મ౬♨ͷத৺ͰϓϋʔΛڣͿ 3F'63004","
None
εΫϥϜ࠲ஊձ
None
None
ࣗͷϓϨθϯελΠϧΛݟ͚ͭΔձ ࢜௨1-:!וా
े ޙ Μ ͷ ʁ Ͳ ͏ ͢ Ͳ
͏ ͠ · ͠ ΐ ʁ ϫʔΫελΠϧϫʔΫγϣοϓ ࢜௨1-:04","
தඌྲྀΩϟϦΞ !0#1ΞΧσϛΞ ۃΊͯखલউखͳ
ө૾º)BQUJDΫϩετʔΫ ࢜௨1-:
ं͍͢ӡಈձɺͦͷ தඌকࢤ
None
None
Bar Science ʰχοΫϦογϡʹΑΖ͘͠ʱ χοΫϦογϡ-ܦӦڞಉମͷࢥ- 2018/6/1 தඌ কࢤ @ Panasonic Wonder
LAB OSAKA ϒϥοΫδϟοΫʹΑΖ͘͠ ࠤ౻लๆ
None
ۚ༥4&தඌকࢤ
None
αʔυϓϨΠε Ͳ͏͏ʁ
None
None
αϥϦʔϚϯͱͯ͠ ࣋ͪาָ͖͘ث .JY-FBQ
ࢥͬͨΑΓ ৭ʑͬͯΔΑ͏Ͱ͢
ࠓϓϨθϯ
࣭ʣ ϓϨθϯͬͯ ԿͷͨΊʹ͠·͔͢ʁ
ྫʣ υΫλʔϖούʔΛ ૬खʹҿΜͰཉ͍͠ʂ ͲΜͳϓϨθϯʁ
ճ ങͬͯ͢ɻ
ߴա͗ΔϞϊͷ࣌ʁ ങ͑ͳ͍ίτͷ࣌ʁ
૬खʹߦಈม༰ͯ͠Β͏ ͨΊʹɺ͖͑Δ
͑Δɹɹ▶ ฉ͖ྲྀ͢ ͖͑Δɹ▶ ߦಈʹҠ͢
࣮ԋ⁞
υΫλʔϖούʔΛ ͬͯ·͔͢ʁ
ྺ࢙ 1885ΞϝϦΧͰൢച(Ξ ϝϦΧ࠷ݹͷࢎҿྉ) ։ൃऀ ΣʔυɾϞϦιϯ νϟʔϧζɾΞϧμʔτϯ ಛ ̎̏छྨͷݪྉ͔ΒͳΔಠ ಛͷϑϨʔόʔ ग़య
WIKIPEDIA
ຊ ̍̓̏̕ൢച։࢝ ຊίΧɾίʔϥ ൢച ΤϦΞ टݍɺ੩Ԭݝɺԭೄݝ ਓؾ ͖ݏ͍͔Εɺྲྀ௨গ ͳ͘ɺҰ෦ʹϑΝϯ͕͍Δ ग़య
WIKIPEDIA
͊͞ υΫλʔϖούʔ ͍͔͕Ͱ͔͢ʁ
࣮ԋ
υΫλʔϖούʔΛ ͬͯ·͔͢ʁ
͖ݏ͍͕େ͖͔͘ Εɺී௨͕͍ͳ͍ϑ ϨʔόʔίʔϥͰ͢ɻ ࢲۤखͰͨ͠ɻ
ϑϦʔυΫλʔϖούʔ੍
༏लͳઌഐࣾһɺ ͘׆༂͢Δଞࣾͷ ํʑʹฉ͘ͱɺຊ ʹυΫλʔϖούʔ ͖Ͱͨ͠ʂ தඌௐ
̏ճҿΜͩΒบʹͳͬͨ
͊͞ υΫλʔϖούʔ ͍͔͕Ͱ͔͢ʁ
࣮ԋ⁞ͱ࣮ԋ ͲͪΒ͕υΫλʔϖούʔ ҿΈͨ͘ͳΓ·ͨ͠ʁ
தඌͷ ͩ͜ΘΓ ࣗͷΩϟϥʹɹ ߹ͬͨελΠϧ ڞײͨͤΔ ετʔϦʔ ࣗΑΓ ૬खΛେࣄʹ ͑ΔςΫϊϩδʔ ςʔϚʹର͢Δ
ؾ࣋ͪͷڧ͞
ࣗͷΩϟϥʹ߹ͬͨελΠϧ δϣϋϦͷ૭ ࣗͬͯΔ ͕ࣗΒͳ͍ ଞਓ͕ͬͯΔ ։์˓ ˕ ଞਓ͕Βͳ͍ ൿີ ະ
ڞײͨͤΔετʔϦʔ ɹΤϯλϝ͔Βֶ΅͏ʂɹ ɾখઆɺ̍̌̌ಡΜͰΈΔ ɾϨϏϡʔॻ͍ͯΈΔ ɾອ࠽ͭͬͯ͘ΈΔ ɾϥΠτϊϕϧॻ͍ͯΈΔ
ࣗͷΩϟϥʹ߹ͬͨελΠϧ ڞײͨͤΔετʔϦʔ ࣗΑΓ૬खΛେࣄʹ ɾओਓެͱ૬ͷαΫηεετʔϦʔ ɾΩϟϥઃఆͱγφϦΦ࡞Γ͕େࣄ
ɾࣝΛఏڙ͠ඥ͚ͮΔ ɾࣝͱਓΛ݁ͼ͚ͭΔ ɾ͍͜͠ͱΛ؆୯ʹ͑Δ ɾΠϯλϥΫςΟϒ ɾ͕ࣗস͏ ɾࢀՃऀΛָ͠·ͤΔ
࣮ԋ
ࠓɺֶΜͰ͍Δਓʁ
ࠓɺڭ͍͑ͯΔਓʁ
ֶͼͷൿ݃ɺΓ͍ͨਓʁ
None
͘Μ͍͘Μ ͘Μ͍ͬͨΜ
None
̢̠̪̤̣ߦͬͯͨਓʁ ༑ୡੰͰߦͬͯͨਓ͕ ͍Δਓʁ
ެจࣜͷൿ݃ɺΓ͍ͨʁ
͜΅ΕམͪΔΠΫ ϥ൧ͷళͰɺެจ ͷਓʹฉ͍ͨʂ (ΠΫϥ൧৯ͳ͔͚ͬͨͲ)
ެจࣜͷൿ݃ ᶃ ͠ࢉ͚ͩͰ̒ɼ̌̌̌
ͲΜͳࢠͲɺͪΐ͏Ͳ ͍͍Ͱਖ਼ղͰ͖Δ ϨϕϧΞοϓ͕࣮ײͰ͖Δ ୭͕ܧଓͰ͖Δ
ެจࣜͷൿ݃ ᶄ ઌੜຖ̎̌୯Ґඞཁ
ֶͿ͜ͱΛΊͨΒڭ͑ͯ ͳΒͳ͍ ू߹ݚमɺάϧʔϓֶशɺݸผ ίϯαϧͰɺֶͼଓ͚Δઌੜ
ެจࣜͷൿ݃ ᶅ ݁ہɺʮ୭ʯ͔ΒֶͿ͔
ઌੜʹͳΓ͍ͨਓɺ໘ஊ͢ Δ͠ɺඞཁͳΒώΞϦϯά ͢Δ ҬͰ͍͍ධͩͱֶͼ͢ ͘ͳΔɺڥେࣄ
·ͱΊ
ެจ͔Β͔Δֶशϝιου ൿ݃ᶃ ήʔϛϑΟέʔγϣϯͰܧଓ ൿ݃ᶄ ڭ͑߹͏ɺֶश͢Δ৫ ൿ݃ᶅ ϝϯλʔʹΑΔϞνϕʔγϣϯ
ղઆ ˓ ฉ͖खΛר͖ࠐΉ ˓ฉ͖खΛࣄऀʹ ˓γϯϓϧʹ̏ͭʹ·ͱΊΔ ˓ֶͼͷςΫϊϩδʔ ˓؇ٸ͚ͭͨྲྀΕ
࣭ʁ