Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
みんなで書こう二分探索
Search
matumoto
June 10, 2021
Technology
0
68
みんなで書こう二分探索
2021/7月の大LTでの発表資料です
イベントページはこちら
https://zli.connpass.com/event/216615/
matumoto
June 10, 2021
Tweet
Share
More Decks by matumoto
See All by matumoto
testingを眺める
matumoto
1
170
sync/v2 プロポーザルの 背景と sync.Pool について
matumoto
0
560
Goトランザクション処理
matumoto
1
57
いまいちどスライスの 挙動を見直してみる
matumoto
0
360
Go1.22のリリース予定の機能を見る
matumoto
0
70
GoのUnderlying typeについて
matumoto
0
210
Typed-nilについて
matumoto
0
350
GoのType Setsという概念
matumoto
0
33
GoのRateLimit処理の実装
matumoto
0
430
Other Decks in Technology
See All in Technology
特別捜査官等研修会
nomizone
0
560
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
980
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
230
ActiveJobUpdates
igaiga
1
320
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
180
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
2.4k
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
170
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
140
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.7k
ESXi のAIOps だ!2025冬
unnowataru
0
350
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.3k
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
500
Featured
See All Featured
Amusing Abliteration
ianozsvald
0
69
Google's AI Overviews - The New Search
badams
0
870
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
GitHub's CSS Performance
jonrohan
1032
470k
KATA
mclloyd
PRO
33
15k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
230
Designing Powerful Visuals for Engaging Learning
tmiket
0
190
The Spectacular Lies of Maps
axbom
PRO
1
400
Optimizing for Happiness
mojombo
379
70k
Embracing the Ebb and Flow
colly
88
4.9k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
510
Practical Orchestrator
shlominoach
190
11k
Transcript
みんなで書こう二分探索 会津大学2年松本響輝
二分探索って? ・二分していく探索です それ以上でもそれ以下でもない 探索する区間の長さをNとして なんと計算量オーダーがO(logN)ではやい! 半分,半分,半分,半分,......................
強い方のツイートで一時期盛り上がりました
どういう動き方か
どう動くの? 端っこを決めて、その真ん中で区間を分けていく。 使う方 使う方 使う方
なにを求められるのか
なにができるの ・ある境界を求められる 例 A = {3, 5, 10, 20, 33,
90, 98}の配列で値が15以上を満たす最小の index を返す場合 left : 0 right : 6 mid : 3 ← ( left + right ) / 2 A mid は20なので、15以上! ということは、探索する区間を左側にずらす→ right を mid にする
A = {3, 5, 10, 20, 33, 90, 98}の配列で値が15以上を満たす最小の index
を返す場合 left : 0 right : 3 ← mid mid : 1 ← ( left + right ) / 2 A mid は5なので、15以上じゃない! ということは、探索する区間を右側にずらす→ left を mid + 1にする
A = {3, 5, 10, 20, 33, 90, 98}の配列で値が15以上を満たす最小の index
を返す場合 left : 2 ← mid + 1 right : 3 mid : 2 ← ( left + right ) / 2 A mid は10なので、15以上! ということは、探索する区間を右側にずらす→ left を mid + 1にする
A = {3, 5, 10, 20, 33, 90, 98}の配列で値が15以上を満たす最小の index
を返す場合 left : 3 ← mid + 1 right : 3 mid : 3 ← ( left + right ) / 2 A mid は20なので、15以上! left と right が同じになったので left を返す( right でもよい)
なにを求めるの? ・ある境界を求められる つまり、条件を定めたときの境界を求めることができる ・ソート済みの配列の中で値が10以上を満たす最小の index ・0~n以下の素数の中で200000以上の最小の素数 条件が有効でない部分 条件が有効な部分 ※境界は整数でないこともあります
なにがうれしいのか
なにがうれしい? ・応用ができる! 例:値の検索 配列の中で値が x 以上を満たす最小の index → index 番目が
x ならOK、そうでないならその配列にはない ・計算量が少ない! 最悪でも計算量がO(logN) 0~1018くらいの区間だったとしても十分に高速(そんな大きい数を扱う職場...)
None
実装は? 1. 二分探索を使わない 2. 標準の関数を使う 3. 自分で作る
1.二分探索を使わない
1.二分探索を使わない (´・ω・`) え?
2.標準の関数を使う
2.標準の関数を使う • C++ ◦ lower_bound ◦ upper_bound • Python ◦
bisect • java ◦ Arrays.binarySearch ただ、配列に対して二分探索はできるが それ以外への二分探索ができない...
3.自分で作る
3.自分で作る(C++) 関数にするより、テンプレを覚えて書いた方が汎用性がよい! そんなあなたにめぐる式二分探索! ※競技プログラミング界隈はキャラがおおいがち 因幡めぐるアカウント様( https://twitter.com/meguru_comp)より
めぐる式二分探索の前に.. ・二分探索の実装上の工夫(先人たちの汗と涙の知恵) • 区間は半開区間[ left, right )で扱う 閉区間[ left, right
] これは left 以上 right 以下 半開区間 [ left, right ) これは left 以上 right 未満 今まで [ left, right ] → [ left, mid - 1 ]だったが [ left, right ) → [ left, mid )と簡潔に! ※ left を mid にする場合もおなじ ついでに、長さが N の配列のとき [ 0, N - 1 ] としてたのが [ 0, N ) にできる
めぐる式二分探索とは • めぐる式二分探索の特徴 ・ループの条件に絶対値を使っている ・ok, ng などの変数がある ・半開区間 ・最終的には ok
に求めたい値が入っている ・判定部分を関数にしている(←これについては諸説ありです) (ok, ng 以外の変数名の候補としては valid, invalid がある)
valid, invalid(ok, ng)みたいな変数には何の値が入るの? • ある条件を元にその境界を求めたい→二分探索でのis_valid関数を作る • validにはis_valid(valid)としたときに必ずtrueとなる値を入れる • invalidにはis_valid(invalid)としたときに必ずfalseとなる値を入れる •
例 ◦ n要素のソート済み配列 aからx以上の要素の最小のインデックスを見つけたい ▪ (配列aにはx以上の要素が少なくとも 1つは存在するものとする ) ◦ is_valid関数はindexを受け取ってa[i] >= x かどうかを判定するように作る ◦ validの初期値にはn-1を入れておく ◦ invalidの初期値には-1を入れておく(今回は invalidが開区間なので0じゃない) ◦ これであとは二分探索するだけ ▪ ※実際には、配列aの末尾に番兵として INFを挿入してvalid=nとする方が多いと思います
閉区間の実装と比較 ・+1, -1 を考えるのが混乱させる ・left か right のどちらにほしい値があるのか考える必要がある
閉区間の実装と比較 ・is_valid 関数を作ると、条件だけ考えることができる ・最終的にほしい値が valid だと分かりやすい ←の is_valid 関数は C++
のラムダ式です
これであなたも快適な二分探索ライフを! ご清聴ありがとうございました