Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
HLT CPU Consumption
Search
Sasha Mazurov
February 06, 2012
Science
0
350
HLT CPU Consumption
Sasha Mazurov
February 06, 2012
Tweet
Share
More Decks by Sasha Mazurov
See All by Sasha Mazurov
L1Calo Offline Software Status
mazurov
0
77
Performance and Regression tests for Simulation
mazurov
0
86
About v2
mazurov
0
70
L1Calo Offline Software Status
mazurov
0
100
L1Calo Offline Software Status
mazurov
0
100
LHCbPR V2
mazurov
0
140
Paper approval
mazurov
0
72
Conventions' Publications
mazurov
0
64
Ph.D final exam
mazurov
0
120
Other Decks in Science
See All in Science
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
400
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
900
Ignite の1年間の軌跡
ktombow
0
180
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
560
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
160
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
463
34k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Fireside Chat
paigeccino
41
3.7k
Automating Front-end Workflow
addyosmani
1371
200k
Docker and Python
trallard
47
3.7k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
Statistics for Hackers
jakevdp
799
230k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Transcript
HLT CPU Consumption Sasha Mazurov 6 Febrary 2012
Tool Gaudi Auditor & Intel® VTune™ Amplifier XE 2011 Can
be run on any lxplus node
Benefits ➔ Can focus on a specific sequence/algorithm(s). ➔ Skip
initialization & finalization phase. ➔ Report CPU consumption per algorithm / function / class / module. ➔ Perfect GUI & reports.
http://amazurov.ru/cern/intelprofiler/ - installation - documentation - screencasts $> intelprofiler -o
/where/to/store/profiler/output myJob.py
None
Profiler vs. HLT1 Lines (Offline )
https://github.com/mazurov/HltProfiling profiler = IntelProfilerAuditor() profiler.StartFromEventN = 5000 profiler.StopAtEventN = 15000
profiler.IncludeAlgorithms = ["Hlt1TrackAllL0", "Hlt1DiMuonHighMass", "Hlt1DiMuonLowMass"] Jop Options Moore v12r10
Hotspots
Top Hotspots
CPU/Per Function
CPU / Per Module
CPU/Per Algorithm
http://amazurov.ru/cern/hltprofilingresults/
CPU / Per Function In Algorithm
CPU / Per Source Code (debug mode)
TCMalloc vs. “new” Operator
Before: After: CPU: 238 s CPU: 222 s
Results ➔ tc_new is twice faster than “new” operator. ➔
5% total improvement for Hlt1 job.
GCC 4.3 vs. GCC 4.6
GCC 4.3 GCC 4.6 -O2 flag ~ 3.6% worth
Two profiles comparison
Result (preliminary) ➔ It's not evident, that GCC 4.6 optimize
better than GCC 4.3 (for HLT1 jobs).
Future plans ➔ Profile code compiled with GCC 4.6 and
-O3 flag. ➔ Profile code compiled with GCC 4.6's profile driven optimization. ➔ Create a web interface to display collected profiler results.
http://amazurov.ru/cern/hltprofilingpresentation