Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
Search
MIKIO KUBO
April 30, 2024
Research
2
970
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
MIKIO KUBO
April 30, 2024
Tweet
Share
More Decks by MIKIO KUBO
See All by MIKIO KUBO
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook (Final Version)
mickey_kubo
0
27
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook (Short Version)
mickey_kubo
1
31
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook
mickey_kubo
1
68
History and Future of MO+AI
mickey_kubo
1
61
History and Future of MO+AI (Fusion of Mathematical Optimization and Artificial Intelligence)
mickey_kubo
1
25
Next.js 入門解説: Reactとの決定的な違いとApp Routerに基づくモダンWeb開発
mickey_kubo
1
87
Google Antigravity and Vibe Coding: Agentic Development Guide
mickey_kubo
3
270
React完全入門
mickey_kubo
1
91
TypeScript初心者向け完全ガイド
mickey_kubo
1
89
Other Decks in Research
See All in Research
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
290
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
270
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
160
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
430
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.1k
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
5
2.4k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
380
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
470
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
930
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
430
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
63
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
47k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
33
30 Presentation Tips
portentint
PRO
1
180
Heart Work Chapter 1 - Part 1
lfama
PRO
3
35k
エンジニアに許された特別な時間の終わり
watany
106
220k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
31
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Designing for humans not robots
tammielis
254
26k
Transcript
機械学習と最適化の融合 ⽂脈付き確率的最適化 と最短路を例として Mikio Kubo
確率的最短路問題 あなたは家(始点s)から⼤学(終点t)まで⾞で通勤している.⾼ 速を使う道 (s,1), (2,t)を使うと最短2時間で着くが,混雑するときに は6時間かかる.授業開始までTmax (=5) 時間の余裕があるが,でき るだけ早く着きたい.どのような経路を選択すれば良いだろうか? 移動時間
s t 1 2 1 3.5 1.5 確率 ½ で 3 確率 ½ で 1 確率 ½ で 3 確率 ½ で 1
期待値による最適化 パス s => 1 => t が最適 (期待値は4) s
t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 枝 の移動時間が独⽴と仮定 3+3 = 6 確率 ¼ 3+1 or 1+3 =4 確率 ½ 1+1 = 2 確率 ¼ 確率 ¼ で実⾏不能 (Tmax=5)
確率的最適化の解 パス s => 2 => t が最適 (期待値は 3.5
+ 1.5 = 5) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 Tmax=5のときの唯⼀の実⾏可能解
その他の解 パス s => 1=> 2 => t が最適 (期待値は
(5.5 + 3.5)/2 = 4.5) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 Tmax=5.5のときの最適解 枝 の移動時間が独⽴と仮定 3+1+1.5 = 5.5 確率 ½ 1+1+1.5 = 3.5 確率 ½ 確率 ½ で実⾏不能 (Tmax=5)
リコース解 事前にパスを決めておく即時決定 (here & now) でなく,途中の情報でパス を変えて良い待機決定(wait & see; リコース)
点1まで移動し,s=>1 の移動時間が1なら 1=> t,移動時間が3なら 1=>2=>t を選ぶ(期待値は (5.5 + 2)/2 = 3.75) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 枝の移動時間が同⼀と仮定 1+1 = 2 確率 ½ 3+1+1.5 = 5.5 確率 ½ Tmax=5.5のときの最適⽅策
⽂脈付き予測・最適化 過去の天気(context; ⽂脈)と移動時間のデータをもっている.天気予 報は当たっているとしたとき移動時間を予測し,それをもとに経路を選 択したい.(単に予測してから最適化は「期待値を最⼩化」と同じ.) s t 1 2 1
3.5 1.5 過去のデータ ☀ 1,1,1,3,1,1,… ☂ 3,3,1,3,3,1,… 過去のデータ ☀ 1,1,3,1,1,1,… ☂ 1,3,1,3,3,3,… ⽂脈 F = ☀ ☂ ̂ 𝑐 = 𝐸 𝑐 𝐹 ] F の条件下での移動費⽤ c の予測値 ☂ ̂ 𝑐 = 2.5 ☀ ̂ 𝑐 = 1.5
⽂脈付き予測・最適化 (1) 費⽤の実現値をもとに最適化した場合との差をロス関数として機械学習 (Smart Prediction-then-Optimize) 最適解オラクル 実現値 c が既知のときの最適値 𝑧∗
𝑐 = min "∈$ 𝑐%𝑥 ☀で実現値が移動時間 3 の場合 𝐿𝑂𝑆𝑆 ̂ 𝑐, 𝑐 = 𝑐!𝑥∗ - 𝑐 − 𝑧∗ 𝑐 = 3 + 3 − 3.5 + 1.5 = 1 SPOロス(⾮凸) 𝑥∗ s t 1 2 1 3.5 1.5 ☀ ̂ 𝑐 = 1.5 ☀ ̂ 𝑐 = 1.5 𝑥∗ ( 𝑐 s t 1 2 1 3.5 1.5 ☀ c = 3 ☀ c = 3 𝑥∗(𝑐)
⽂脈付き予測・最適化 (2) 𝐿𝑂𝑆𝑆# ̂ 𝑐, 𝑐 = max { $∈&
𝑐!𝑥 − 2 ̂ 𝑐!𝑥 } + 2 ̂ 𝑐!𝑥∗ 𝑐 − 𝑧∗ 𝑐 SPO+ロス(凸) SPOロスの上界 線形最適化 データ 解 機械学習 SPO+ロス F 𝐿𝑂𝑆𝑆! ̂ 𝑐, 𝑐 s t 1 2 1 3.5 1.5 ☀ ̂ 𝑐 = 1.5 ☀ ̂ 𝑐 = 1.5 𝑥∗ ( 𝑐 s t 1 2 1 3.5 1.5 ☀ c = 3 ☀ c = 3 𝑥∗(𝑐) = 0 + 2×5 − 5 = 5 (≥ 1)
⽂脈付き予測・ 確率的最適化 ⽂脈から予測し,シナリオ⽣成して確率的最適化 (Estimation-then-Optimize) 様々な確率的最適化の⼿法が使える(CVaR,確率制約,ロバスト) s t 1 2 1
3.5 1.5 ☀ s t 1 2 1 3.5 1.5 ☂