Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
Search
MIKIO KUBO
April 30, 2024
Research
2
700
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
MIKIO KUBO
April 30, 2024
Tweet
Share
More Decks by MIKIO KUBO
See All by MIKIO KUBO
Mathematical Optimization +Artificial Intelligence =MOAI
mickey_kubo
1
280
Visualization
mickey_kubo
2
450
機械学習と最適化の融合動的ロットサイズ決定問題を例として
mickey_kubo
2
400
サプライチェーン基本分析システム SCBAS
mickey_kubo
3
120
SCM Solutions - Metrics, Trade-offs and Beyond -
mickey_kubo
1
160
理論と実務を繋ぐには V
mickey_kubo
2
1.1k
数理最適化と機械学習の融合アプローチ-分類と新しい枠組みと応用-
mickey_kubo
5
1.3k
Other Decks in Research
See All in Research
SSII2024 [OS2] 大規模言語モデルとVision & Languageのこれから
ssii
PRO
5
1.4k
RCEへの近道
kawakatz
1
740
LLM時代の半導体・集積回路
kentaroy47
1
390
SSII2024 [OS1] 画像生成技術の発展: 過去10年の軌跡と未来への展望
ssii
PRO
3
1.8k
アジャイルコミュニティが、宗教ポイと云われるのは何故なのか?
fujiihideo
0
350
Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices
masakat0
0
160
仮説検定とP値
shuntaros
7
8.2k
The past, present, and future of local-first
ept
0
770
Matching 2D Images in 3D: Metric Relative Pose from Metric Correspondences
sgk
0
240
CSER 2024 Keynote
tsantalis
0
120
自動運転・AIシステムの問題を賢く探す・賢く直す / Smart Search & Repair Techniques for Automated Driving Systems and AI Systems
ishikawafyu
0
180
「確率的なオウム」にできること、またそれがなぜできるのかについて
eumesy
PRO
7
2.8k
Featured
See All Featured
Faster Mobile Websites
deanohume
304
30k
Mobile First: as difficult as doing things right
swwweet
221
8.8k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
226
52k
[RailsConf 2023] Rails as a piece of cake
palkan
46
4.6k
Speed Design
sergeychernyshev
21
420
How GitHub (no longer) Works
holman
310
140k
Building Applications with DynamoDB
mza
89
6k
Thoughts on Productivity
jonyablonski
66
4.2k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Automating Front-end Workflow
addyosmani
1365
200k
Design by the Numbers
sachag
277
19k
Product Roadmaps are Hard
iamctodd
PRO
48
10k
Transcript
機械学習と最適化の融合 ⽂脈付き確率的最適化 と最短路を例として Mikio Kubo
確率的最短路問題 あなたは家(始点s)から⼤学(終点t)まで⾞で通勤している.⾼ 速を使う道 (s,1), (2,t)を使うと最短2時間で着くが,混雑するときに は6時間かかる.授業開始までTmax (=5) 時間の余裕があるが,でき るだけ早く着きたい.どのような経路を選択すれば良いだろうか? 移動時間
s t 1 2 1 3.5 1.5 確率 ½ で 3 確率 ½ で 1 確率 ½ で 3 確率 ½ で 1
期待値による最適化 パス s => 1 => t が最適 (期待値は4) s
t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 枝 の移動時間が独⽴と仮定 3+3 = 6 確率 ¼ 3+1 or 1+3 =4 確率 ½ 1+1 = 2 確率 ¼ 確率 ¼ で実⾏不能 (Tmax=5)
確率的最適化の解 パス s => 2 => t が最適 (期待値は 3.5
+ 1.5 = 5) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 Tmax=5のときの唯⼀の実⾏可能解
その他の解 パス s => 1=> 2 => t が最適 (期待値は
(5.5 + 3.5)/2 = 4.5) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 Tmax=5.5のときの最適解 枝 の移動時間が独⽴と仮定 3+1+1.5 = 5.5 確率 ½ 1+1+1.5 = 3.5 確率 ½ 確率 ½ で実⾏不能 (Tmax=5)
リコース解 事前にパスを決めておく即時決定 (here & now) でなく,途中の情報でパス を変えて良い待機決定(wait & see; リコース)
点1まで移動し,s=>1 の移動時間が1なら 1=> t,移動時間が3なら 1=>2=>t を選ぶ(期待値は (5.5 + 2)/2 = 3.75) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 枝の移動時間が同⼀と仮定 1+1 = 2 確率 ½ 3+1+1.5 = 5.5 確率 ½ Tmax=5.5のときの最適⽅策
⽂脈付き予測・最適化 過去の天気(context; ⽂脈)と移動時間のデータをもっている.天気予 報は当たっているとしたとき移動時間を予測し,それをもとに経路を選 択したい.(単に予測してから最適化は「期待値を最⼩化」と同じ.) s t 1 2 1
3.5 1.5 過去のデータ ☀ 1,1,1,3,1,1,… ☂ 3,3,1,3,3,1,… 過去のデータ ☀ 1,1,3,1,1,1,… ☂ 1,3,1,3,3,3,… ⽂脈 F = ☀ ☂ ̂ 𝑐 = 𝐸 𝑐 𝐹 ] F の条件下での移動費⽤ c の予測値 ☂ ̂ 𝑐 = 2.5 ☀ ̂ 𝑐 = 1.5
⽂脈付き予測・最適化 (1) 費⽤の実現値をもとに最適化した場合との差をロス関数として機械学習 (Smart Prediction-then-Optimize) 最適解オラクル 実現値 c が既知のときの最適値 𝑧∗
𝑐 = min "∈$ 𝑐%𝑥 ☀で実現値が移動時間 3 の場合 𝐿𝑂𝑆𝑆 ̂ 𝑐, 𝑐 = 𝑐!𝑥∗ - 𝑐 − 𝑧∗ 𝑐 = 3 + 3 − 3.5 + 1.5 = 1 SPOロス(⾮凸) 𝑥∗ s t 1 2 1 3.5 1.5 ☀ ̂ 𝑐 = 1.5 ☀ ̂ 𝑐 = 1.5 𝑥∗ ( 𝑐 s t 1 2 1 3.5 1.5 ☀ c = 3 ☀ c = 3 𝑥∗(𝑐)
⽂脈付き予測・最適化 (2) 𝐿𝑂𝑆𝑆# ̂ 𝑐, 𝑐 = max { $∈&
𝑐!𝑥 − 2 ̂ 𝑐!𝑥 } + 2 ̂ 𝑐!𝑥∗ 𝑐 − 𝑧∗ 𝑐 SPO+ロス(凸) SPOロスの上界 線形最適化 データ 解 機械学習 SPO+ロス F 𝐿𝑂𝑆𝑆! ̂ 𝑐, 𝑐 s t 1 2 1 3.5 1.5 ☀ ̂ 𝑐 = 1.5 ☀ ̂ 𝑐 = 1.5 𝑥∗ ( 𝑐 s t 1 2 1 3.5 1.5 ☀ c = 3 ☀ c = 3 𝑥∗(𝑐) = 0 + 2×5 − 5 = 5 (≥ 1)
⽂脈付き予測・ 確率的最適化 ⽂脈から予測し,シナリオ⽣成して確率的最適化 (Estimation-then-Optimize) 様々な確率的最適化の⼿法が使える(CVaR,確率制約,ロバスト) s t 1 2 1
3.5 1.5 ☀ s t 1 2 1 3.5 1.5 ☂