Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3勉強会(2015年1月21日)日本語入力システムの歩み
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
MIKAMI-YUKI
January 20, 2015
Education
0
92
B3勉強会(2015年1月21日)日本語入力システムの歩み
MIKAMI-YUKI
January 20, 2015
Tweet
Share
More Decks by MIKAMI-YUKI
See All by MIKAMI-YUKI
2016年_年次大会_発表資料
mikamiy
0
130
文献紹介_10_意味的類似性と多義解消を用いた文書検索手法
mikamiy
0
350
文献紹介_9_コーパスに基づく動詞の多義解消
mikamiy
0
130
文献紹介_8_単語単位による日本語言語モデルの検討
mikamiy
0
95
文献紹介_7_自動獲得した未知語の読み・文脈情報による仮名漢字変換
mikamiy
0
110
文献紹介_6_複数の言語的特徴を用いた日本語述部の同義判定
mikamiy
0
110
文献紹介_5_マイクロブログにおける感情・コミュニケーション・動作タイプの推定に基づく顔文字の推薦
mikamiy
0
150
文献紹介_4_結合価パターンを用いた仮名漢字変換候補の選択
mikamiy
0
410
文献紹介_3_絵本のテキストを対象とした形態素解析
mikamiy
1
430
Other Decks in Education
See All in Education
2025-10-30 社会と情報2025 #05 CC+の代わり
mapconcierge4agu
0
110
10分で学ぶ すてきなモナド
soukouki
1
150
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
ThingLink
matleenalaakso
28
4.3k
MySmartSTEAM 2526
cbtlibrary
0
190
学習指導要領と解説に基づく学習内容の構造化の試み / Course of study Commentary LOD JAET 2025
masao
0
130
東大1年生にJulia教えてみた
matsui_528
7
12k
AIでキミの未来はどう変わる?
behomazn
0
110
外国籍エンジニアの挑戦・新卒半年後、気づきと成長の物語
hypebeans
0
740
核軍備撤廃に向けた次の大きな一歩─核兵器を先には使わないと核保有国が約束すること
hide2kano
0
240
自己紹介 / who-am-i
yasulab
PRO
6
6.3k
JavaScript - Lecture 6 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Featured
See All Featured
Facilitating Awesome Meetings
lara
57
6.8k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
920
Six Lessons from altMBA
skipperchong
29
4.2k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
ラッコキーワード サービス紹介資料
rakko
1
2.3M
First, design no harm
axbom
PRO
2
1.1k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Visualization
eitanlees
150
17k
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
Code Reviewing Like a Champion
maltzj
527
40k
Prompt Engineering for Job Search
mfonobong
0
160
Everyday Curiosity
cassininazir
0
130
Transcript
長岡技術科学大学 B3 三上侑城 3年勉強会 2015年1月21日 日本語入力システムの歩み 自然言語処理研究室 1
かな漢字変換の始まり 1970年頃にかな漢字変換の概念が 提案された。 しかし、当時のコンピュータの性能では 厳しかった。 1980年頃から実用化された。 2
かな漢字変換の始まり 単文節変換: 1回の入力で、1つの分節、もしくは文節 の位置を自分で指定する必要があった。 例:「だいがくのけんきゅう」 「だいがく」→「大学」,「の」→「の」, 「けんきゅう」→「研究」 3
かな漢字変換の始まり 連文節変換: 複数の文節を一気に変換することができ る。現在使われているもの。 例:「だいがくのけんきゅう」 「だいがく」「の」「けんきゅう」←自動 「大学の研究」 4
n文節最長一致法 連文節変換を実現する方法の一つ。 連文が最長になるようにする方法 高速でメモリの消費量が少ない。 5
n文節最長一致法の例 n=2とした時 例文:「かれはがくせいです」 まず、「かれは…」の一文字から始まる文 節を展開すると、 「彼」,「狩れ」,「彼は」,「枯葉が」 と、得られたとする。 次にそれぞれに後続する文節を展開する。 6
2文節最長一致法の例 7 彼 狩れ 歯 歯が 歯 歯が 彼は 学生
学生で 学生です 枯葉が 句 癖 最長
n文節最長一致法 なぜ上手くできるのか、現在でも理論的 に説明出来ない。 ↓ 「長い文節を選択したほうがうまくいくこと が多い」という経験から成り立っている。 8
n文節最長一致法の問題 原理的にうまく変換できない文がある。 大きく2つの問題点がある。 → 全部の可能性を試していない。 → 間違った文を訂正するのが難しい。 9
n文節最長一致法の改善 文節数以外の評価項目を使う。 全部の候補を検索し、最も良さそうなも のを選択する。 → 日本語は単語間に「つながりやすさ」 があり、これを考慮する。 → このような方法を接続強度法と言う。 10
n文節最長一致法の改善 接続強度法 例文:「ちかくしじょうちょうさをする」 正解:「近く市場調査をする」 1:「近く」,「市場」→形容詞+名詞 2:「地下」,「串」 →名詞+名詞 形容詞+名詞の方が良くある(高スコア) 11
ビタビアルゴリズム 隣接する単語間に対してスコアを定義す るもので、最適解を高速に求めることが できる。 パラメータの調整が重要になる。 12
ビタビアルゴリズム パラメータの調整法 人の手でパラメータを決めるのは非常に 厳しい。 ↓ 正解データからパラメータを学習させる、 機械学習を用いる。 13
まとめ 昔の日本語入力システムには、ハードウ エアの制約からn文節最長一致法が用 いられていた。 現在ではビタビアルゴリズムにて、機械学 習させて得たパラメータを用いて、文字の 変換を行っている。 14
ご視聴ありがとうございました 参考文献 日本語入力を支える技術 著:徳永拓之 技術評論社 2012年3月 15