Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
B3勉強会(2015年1月21日)日本語入力システムの歩み
Search
MIKAMI-YUKI
January 20, 2015
Education
0
80
B3勉強会(2015年1月21日)日本語入力システムの歩み
MIKAMI-YUKI
January 20, 2015
Tweet
Share
More Decks by MIKAMI-YUKI
See All by MIKAMI-YUKI
2016年_年次大会_発表資料
mikamiy
0
130
文献紹介_10_意味的類似性と多義解消を用いた文書検索手法
mikamiy
0
340
文献紹介_9_コーパスに基づく動詞の多義解消
mikamiy
0
120
文献紹介_8_単語単位による日本語言語モデルの検討
mikamiy
0
92
文献紹介_7_自動獲得した未知語の読み・文脈情報による仮名漢字変換
mikamiy
0
99
文献紹介_6_複数の言語的特徴を用いた日本語述部の同義判定
mikamiy
0
110
文献紹介_5_マイクロブログにおける感情・コミュニケーション・動作タイプの推定に基づく顔文字の推薦
mikamiy
0
140
文献紹介_4_結合価パターンを用いた仮名漢字変換候補の選択
mikamiy
0
410
文献紹介_3_絵本のテキストを対象とした形態素解析
mikamiy
1
420
Other Decks in Education
See All in Education
Présentation_2nde_2025.pdf
bernhardsvt
0
280
The knowledge panel is your new homepage
bradwetherall
0
200
H5P-työkalut
matleenalaakso
4
40k
【ZEPメタバース校舎操作ガイド】
ainischool
0
460
高校におけるプログラミング教育を考える
naokikato
PRO
0
170
AI for Learning
fonylew
0
200
Evaluation Methods - Lecture 6 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.1k
データで見る赤ちゃんの成長
syuchimu
0
330
授業レポート:共感と協調のリーダーシップ(2025年上期)
jibunal
1
140
生成AIとの付き合い方 / Generative AI and us
kaityo256
PRO
11
2k
情報科学類で学べる専門科目38選
momeemt
0
640
探査機自作ゼミ2025スライド
sksat
3
830
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
RailsConf 2023
tenderlove
30
1.3k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
630
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Music & Morning Musume
bryan
46
6.9k
Thoughts on Productivity
jonyablonski
71
4.9k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Agile that works and the tools we love
rasmusluckow
331
21k
Transcript
長岡技術科学大学 B3 三上侑城 3年勉強会 2015年1月21日 日本語入力システムの歩み 自然言語処理研究室 1
かな漢字変換の始まり 1970年頃にかな漢字変換の概念が 提案された。 しかし、当時のコンピュータの性能では 厳しかった。 1980年頃から実用化された。 2
かな漢字変換の始まり 単文節変換: 1回の入力で、1つの分節、もしくは文節 の位置を自分で指定する必要があった。 例:「だいがくのけんきゅう」 「だいがく」→「大学」,「の」→「の」, 「けんきゅう」→「研究」 3
かな漢字変換の始まり 連文節変換: 複数の文節を一気に変換することができ る。現在使われているもの。 例:「だいがくのけんきゅう」 「だいがく」「の」「けんきゅう」←自動 「大学の研究」 4
n文節最長一致法 連文節変換を実現する方法の一つ。 連文が最長になるようにする方法 高速でメモリの消費量が少ない。 5
n文節最長一致法の例 n=2とした時 例文:「かれはがくせいです」 まず、「かれは…」の一文字から始まる文 節を展開すると、 「彼」,「狩れ」,「彼は」,「枯葉が」 と、得られたとする。 次にそれぞれに後続する文節を展開する。 6
2文節最長一致法の例 7 彼 狩れ 歯 歯が 歯 歯が 彼は 学生
学生で 学生です 枯葉が 句 癖 最長
n文節最長一致法 なぜ上手くできるのか、現在でも理論的 に説明出来ない。 ↓ 「長い文節を選択したほうがうまくいくこと が多い」という経験から成り立っている。 8
n文節最長一致法の問題 原理的にうまく変換できない文がある。 大きく2つの問題点がある。 → 全部の可能性を試していない。 → 間違った文を訂正するのが難しい。 9
n文節最長一致法の改善 文節数以外の評価項目を使う。 全部の候補を検索し、最も良さそうなも のを選択する。 → 日本語は単語間に「つながりやすさ」 があり、これを考慮する。 → このような方法を接続強度法と言う。 10
n文節最長一致法の改善 接続強度法 例文:「ちかくしじょうちょうさをする」 正解:「近く市場調査をする」 1:「近く」,「市場」→形容詞+名詞 2:「地下」,「串」 →名詞+名詞 形容詞+名詞の方が良くある(高スコア) 11
ビタビアルゴリズム 隣接する単語間に対してスコアを定義す るもので、最適解を高速に求めることが できる。 パラメータの調整が重要になる。 12
ビタビアルゴリズム パラメータの調整法 人の手でパラメータを決めるのは非常に 厳しい。 ↓ 正解データからパラメータを学習させる、 機械学習を用いる。 13
まとめ 昔の日本語入力システムには、ハードウ エアの制約からn文節最長一致法が用 いられていた。 現在ではビタビアルゴリズムにて、機械学 習させて得たパラメータを用いて、文字の 変換を行っている。 14
ご視聴ありがとうございました 参考文献 日本語入力を支える技術 著:徳永拓之 技術評論社 2012年3月 15