Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
なめらかなシステムの実現に向けて/coherently-fittable-system
Search
monochromegane
July 28, 2020
Technology
0
610
なめらかなシステムの実現に向けて/coherently-fittable-system
GMO Developers Day 2020
https://www.gmo.jp/developersday/
monochromegane
July 28, 2020
Tweet
Share
More Decks by monochromegane
See All by monochromegane
Go言語での実装を通して学ぶLLMファインチューニングの仕組み / fukuokago22-llm-peft
monochromegane
0
130
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
190
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
3.6k
ベクトル検索システムの気持ち
monochromegane
37
11k
Go言語での実装を通して学ぶ、高速なベクトル検索を支えるクラスタリング技術/fukuokago-kmeans
monochromegane
1
220
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
290
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
1k
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
700
AIを前提とした体験の実現に向けて/toward_ai_based_experiences
monochromegane
2
1k
Other Decks in Technology
See All in Technology
プロポーザルのコツ ~ Kaigi on Rails 2025 初参加で3名の登壇を実現 ~
naro143
1
140
Optuna DashboardにおけるPLaMo2連携機能の紹介 / PFN LLM セミナー
pfn
PRO
2
920
【Kaigi on Rails 事後勉強会LT】MeはどうしてGirlsに? 私とRubyを繋いだRail(s)
joyfrommasara
0
170
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
4
440
生成AIとM5Stack / M5 Japan Tour 2025 Autumn 東京
you
PRO
0
230
いまさら聞けない ABテスト入門
skmr2348
1
220
これがLambdaレス時代のChatOpsだ!実例で学ぶAmazon Q Developerカスタムアクション活用法
iwamot
PRO
4
160
E2Eテスト設計_自動化のリアル___Playwrightでの実践とMCPの試み__AIによるテスト観点作成_.pdf
findy_eventslides
1
520
AWS IoT 超入門 2025
hattori
0
210
KMP の Swift export
kokihirokawa
0
340
ガバメントクラウド(AWS)へのデータ移行戦略の立て方【虎の巻】 / 20251011 Mitsutosi Matsuo
shift_evolve
PRO
2
150
ZOZOのAI活用実践〜社内基盤からサービス応用まで〜
zozotech
PRO
0
210
Featured
See All Featured
Faster Mobile Websites
deanohume
310
31k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
Producing Creativity
orderedlist
PRO
347
40k
It's Worth the Effort
3n
187
28k
Writing Fast Ruby
sferik
629
62k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
A Modern Web Designer's Workflow
chriscoyier
697
190k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
The Cult of Friendly URLs
andyhume
79
6.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
Transcript
ࡾ༔հ / Pepabo R&D Institute, GMO Pepabo, Inc. 2020.07.28 GMO
Developers Day ͳΊΒ͔ͳγεςϜͷ ࣮ݱʹ͚ͯ
1SJODJQBMFOHJOFFS :VTVLF.*:",&!NPOPDISPNFHBOF 1FQBCP3%*OTUJUVUF (.01FQBCP *OD IUUQTCMPHNPOPDISPNFHBOFDPN
1. ͡Ίʹ 2. ͳΊΒ͔ͳγεςϜ 3. ͳΊΒ͔ͳγεςϜͷ࣮ݱʹ͚ͯ 4. ·ͱΊ 3 ࣍
1. ͡Ίʹ
5 ϖύϘݚڀॴ(ུশʮϖύݚʯ)ɺࣄۀΛࠩผԽ Ͱ͖Δٕज़Λ࡞Γग़ͨ͢ΊʹʮͳΊΒ͔ͳγες Ϝʯͱ͍͏ίϯηϓτͷԼͰݚڀ։ൃʹऔΓΉ ৫Ͱ͢ɻ ❝ ϖύϘݚڀॴʹ͍ͭͯ http://rand.pepabo.com/
6 ΞΧσϛοΫͳਫ४ʹ͓͚Δ৽نੑɾ༗ޮੑɾ৴ པੑΛٻ͢ΔݚڀΛߦ͏ͱͱʹɺݚڀ։ൃ͠ ٕͨज़Λ࣮ࡍͷγεςϜͱ࣮ͯ͠ɾఏڙ͢Δ͜ ͱΛ௨ͯ͠ɺࣄۀͷʹߩݙ͠·͢ɻ ❝ ϖύϘݚڀॴʹ͍ͭͯ http://rand.pepabo.com/
7 ϖύݚͱαʔϏεͷؔ ࣄۀΛࠩผԽ͢ΔͨΊʹɺݚڀॴͱαʔϏεͷ࿈ܞ͕ॏཁ ݚڀ ։ൃ ӡ༻ αʔϏεͷ՝ͷڞ༗ ݚڀʹΑΔ՝ղܾ ݚڀՌಋೖ࣌ͷ αʔϏεͱͷ࿈ܞ
ݚڀ։ൃ݁ՌΛଈ࣌αʔϏεʹಋೖ͢ΔΈͱɺಋೖޙͷϑΟʔυόοΫʹΑΔαΠΫϧͷߴ ԽʹΑͬͯɺݚڀ։ൃͷߴԽͱࣄۀͷࠩผԽʹͭͳ͛Δ ࣄۀ෦
2. ͳΊΒ͔ͳγεςϜ
9 ϖύϘݚڀॴ(ུশʮϖύݚʯ)ɺࣄۀΛࠩผԽ Ͱ͖Δٕज़Λ࡞Γग़ͨ͢ΊʹʮͳΊΒ͔ͳγες Ϝʯͱ͍͏ίϯηϓτͷԼͰݚڀ։ൃʹऔΓΉ ৫Ͱ͢ɻ ❝ ϖύϘݚڀॴʹ͍ͭͯ http://rand.pepabo.com/
• զʑ͕ৗͰ৮ΕΔγεςϜɺར༻ӡ༻ʹ͓͚Δ༷ʑͳোนʢΰπΰπʣ ʹຬͪ͋;Ε͍ͯΔɻ • → ྫʣར༻ऀͷ໌ࣔతͳࢦࣔɺӡ༻ऀͷஅߋ৽ͷհࡏ 10 എܠ • ͜ΕΒͷোนΛऔΓআ͖ɺར༻ӡ༻ͷշద͞ͷ্ʹͭͳ͛ΔͨΊʹɺར༻
ऀͷίϯςΩετʹج͖ͮ࠷దʹৼΔ͏ʮͳΊΒ͔ͳγεςϜʯΛ࣮ݱ͢ Δɻ
• ʮͳΊΒ͔ͳγεςϜʯͱɺใγεςϜͷ͜ͱΛ͍͏ͷΈͳΒͣɺޓ͍ʹ ӨڹΛٴ΅͠߹͏ܧଓతͳؔʹ͋Δར༻ऀʢϢʔβʔ͓Αͼ։ൃӡ༻ऀʣͱ ใγεςϜͱ͔ΒͳΔ૯ମͱͯ͠ͷγεςϜ 11 ͳΊΒ͔ͳγεςϜ <>܀ྛ݈ଠ ࡾ༔հ দຊ྄հ ͳΊΒ͔ͳγεςϜΛࢦͯ͠
ϚϧνϝσΟΞɺࢄɺڠௐͱϞόΠϧʢ%*$0.0ʣγϯϙδϜ # +VM < ><> < >υϛχΫɾνΣϯ(SBQIJDTGPS'VOEBNFOUBM*OGPSNBUJDTΛվมͯ͠࡞
1. ར༻ऀͱใγεςϜͱ͕ܧଓతͳؔΛऔΓ࣋ͭաఔʹ͓͍ͯɺར༻ऀͦ ΕͧΕʹݻ༗ͷίϯςΩετΛݟग़ͨ͠Γɺ৽ͨͳίϯςΩετΛग़ͨ͠ ΓͰ͖Δ͜ͱ 2. ཁ݅1.Λɺར༻ऀʹΑΔ໌ࣔతͳૢ࡞Λ՝͢͜ͱͳ࣮͘ݱͰ͖Δ͜ͱ 3. ཁ݅1.͓Αͼ2.ʹΑͬͯಘΒΕͨίϯςΩετʹج͖ͮɺใγεςϜ͕ར ༻ऀʹରͯ͠࠷దͳαʔϏεΛࣗಈతʹఏڙͰ͖Δ͜ͱ 12
ͳΊΒ͔ͳγεςϜͷཁ݅ • ࣗಈ͔ͭܧଓతʹར༻ऀͷঢ়گΛѲ͠ɺదԠతʹৼΔ͏ใγεςϜ
• ͳΊΒ͔ͳγεςϜΛ࣮ݱ͢ΔͨΊɺ༷ʑͳαʔϏεɺϨΠϠʹ͓͍ͯҎԼͷ ςʔϚͷͱɺݚڀ։ൃΛਐΊ͍ͯΔ[*] • FastContainer: ԠతͰঢ়ଶมԽͷૉૣ͍γεςϜج൫ٕज़ • ΦʔτεέʔϦϯά: ଟڥͰͷӡ༻ੑΛߟྀͨࣗ͠దԠܕ੍ޚܥ •
ͳΊΒ͔ͳϚονϯά: จ຺ʹԠͨ͡ਪનख๏ͷ࠷దԽ • ߦಈݕ: ଟ໘తͳಛྔʹجͮ͘ਫ਼៛ͳߦಈੳ • ͳΊΒ͔ͳηΩϡϦςΟ: ಁաతͳηΩϡϦςΟ্Λ࣮ݱ͢Δ։ൃख๏ 13 ͳΊΒ͔ͳγεςϜʹ͚ͯ < >ϖύϘݚڀॴݚڀ։ൃՌIUUQTSBOEQFQBCPDPNBSDIJWF
3. ͳΊΒ͔ͳγεςϜͷ࣮ݱʹ͚ͯ
ݚڀίϯηϓτ - ใγεςϜͷࣗదԠ -
• ଟ༷͔ͭܧଓతʹมԽ͢ΔڥͷதͰɺใγεςϜ͕ܧଓతʹػೳ͢Δʹ ɺͦͷߏϩδοΫΛߋ৽͠มԽʹै͢Δඞཁ͕͋Δ • → ྫʣใγεςϜͷෛՙঢ়گɺར༻ऀͷߦಈͷมԽ • ͜Ε·Ͱɺ͜ͷैɺӡ༻ҡ࣋ۀͱͯ͠ӡ༻ऀ͕୲͖ͬͯͨ 16 ใγεςϜͱڥมԽ
• ଟ༷͔ͭܧଓతʹมԽ͢ΔڥͷதͰɺใγεςϜ͕ܧଓతʹػೳ͢Δʹ ɺͦͷߏϩδοΫΛߋ৽͠มԽʹै͢Δඞཁ͕͋Δ • → ྫʣใγεςϜͷෛՙঢ়گɺར༻ऀͷߦಈͷมԽ • ͜Ε·Ͱɺ͜ͷैɺӡ༻ҡ࣋ۀͱͯ͠ӡ༻ऀ͕୲͖ͬͯͨ 17 ใγεςϜͱڥมԽ
• ਓखʹΑΔڥͷมԽݕใγεςϜͷߋ৽ɺैͷ࣌ؒࠩΛ͏ • ݁Ռͱͯ͠ɺ҆ఆੑར༻ऀͷຬͷԼɺӡ༻ऀͷෛ୲ͷ૿ՃΛট͘
• ैདྷͷӡ༻ҡ࣋ͷऔΓΈͰɺใγεςϜΛڥͷมԽʹରԠͤ͞Δͨ ΊɺਓʹΑΔܦݧଇஅͱ෦తͳࣗಈԽʹཹ·͍ͬͯΔ • → ྫʣܦݧଇʹΑΔᮢઃఆɺԽͨ͠ར༻ऀͷߦಈୡʹΑΔஅ 18 ڥมԽʹࣗΒదԠ͢ΔใγεςϜʹ͚ͯ • ਓʹΑΔஅߋ৽ͷఔΛࣗಈԽ͠ɺใγεςϜࣗମ͕ڥมԽΛଊ͑ม
Խʹै͢ΔదԠతͳΈͷݚڀ • ͳΒͼʹ࣮ӡ༻ͷద༻ ݚڀίϯηϓτ
ΦʔτεέʔϦϯάख๏
• ใγεςϜͷӡ༻ʹ͓͍ͯɺॲཧੑೳΛอͪͭͭඞཁ࠷খݶͷαʔόΛ༻͍ Δ͜ͱͰӡ༻ίετΛ੍ޚ͢Δ͜ͱॏཁ • มಈ͢Δαʔόधཁʹै͢ΔͨΊΦʔτεέʔϦϯάػೳΛಋೖ 20 എܠ • ॲཧੑೳΛอͭඞཁ࠷খݶͷαʔόܦݧͱಓͳνϡʔχϯάͰݸผʹ ٻΊΔ͕ɺใγεςϜͷมߋཧରͷ૿Ճʹै͍ࠔʹͳΔ
• ·ͨɺͷࢉग़ʹΦʔτεέʔϦϯάͷ࣮ߦ࣌ͷ࣌ؒࠩͷߟྀඞཁ ӡ༻্ͷ՝
• ܧଓతʹมߋ͞Ε͏ΔෳͷใγεςϜʹରͯ͠ɺΕߟྀͨ͠Φʔτε έʔϦϯάͷ࠷దͳ݅Λܧଓͯ͠ٻΊΔ͜ͱ͕ӡ༻ͷෛ୲ • ใγεςϜΛߏ͢ΔαʔόͷॲཧੑೳΛࣗಈͰѲ͠ɺใγεςϜͷॲ ཧੑೳΛอͭඞཁ࠷খݶ͔ͭΕΛߟྀͨ͠αʔόΛࢉग़͍ͨ͠ • αʔόͷॲཧੑೳΛ࣮ߦ࣌ʹࣗಈ͔ͭܧଓతʹਪఆ͠ɺΦʔτεέʔϦϯάͷ Εߟྀͨ͠࠷దͳαʔόΛࢉग़͢Δ੍ޚܥ 21
ݚڀͷతͱఏҊͷࠎࢠ
• ଟڥͰͷӡ༻ੑΛߟྀͨࣗ͠దԠܕΦʔτεέʔϦϯά੍ޚܥ[2] 22 ఏҊख๏ (Kaburaya AutoScaler) <>ࡾ༔հ ܀ྛ݈ଠ ,BCVSBZB"VUP4DBMFSଟڥͰͷӡ༻ੑΛߟྀͨࣗ͠దԠܕΦʔτεέʔϦϯά੍ޚܥ Πϯλʔωο
τͱӡ༻ٕज़γϯϙδϜจू QQ /PW
• ଟڥͰͷӡ༻ੑΛߟྀͨࣗ͠దԠܕΦʔτεέʔϦϯά੍ޚܥ • M: αʔόॲཧੑೳΛɺ୯Ґ࣌ؒ͋ͨΓͷॲཧͷ্ݶ͔ΒٻΊΔ • D: ༧ΊఆΊͨΕظؒʹର͠ɺݱࡏͷཁٻॲཧͱαʔόॲཧੑೳ͔Βෆ ͢Δͱߟ͑ΒΕΔະॲཧཁٻΛٻΊΔ •
F: ݱࡏͷॲཧཁٻʹະॲཧཁٻΛՃ͑ɺαʔόॲཧੑೳ͔Βඞཁͳ αʔόΛࢉग़ 23 ఏҊख๏ (Kaburaya AutoScaler)
24 ఏҊख๏ͷධՁʢγϛϡϨʔγϣϯʣ αʔόੑೳʢॲཧ্ݶʣͷਪఆධՁ ෛՙ࣌Ұ࣌తʹαʔό͋ͨΓͷෛՙ͕ߴ·Δෛ ՙ૿Ճ࣌Ͱ҆ఆͯ͠ਪఆʢ࣮ઢʣɻ αʔόͷैੑධՁ ੨ઢͷཧαʔόʹैɻΕΛߟྀ͠ɺఆ͞ ΕΔະॲཧͷཁٻΛॲཧՄೳͳαʔόΛೖɻ ະॲཧཁٻͷղফ݁ՌͷධՁ ΕʹΑΓੵ࣮ͨ͠ઢͷະॲཧཁٻΛଈ࣌ղফɻ
ഁઢΕରࡦΛ͠ͳ͍߹ͷਪҠɻ
ਪનγεςϜ
26 എܠ • ใγεςϜʹ͓͚ΔใաଟΛղܾ͢ΔɺਪનγεςϜͷಋೖ • → ͳΜΒ͔ͷํࡦʢ= ਪનख๏ʣʹج͖ͮଟͷબࢶ͔Βར༻ऀ͕ڵຯ Λ࣋ͭͷΛఏҊ͢ΔγεςϜ •
ӡ༻ऀʹͱͬͯɺޮՌతͳʮਪનख๏ʯͷબ͕ॏཁ • ޮՌతͳਪનख๏ঢ়گʹΑͬͯҟͳΔ • ͔͠͠ͳ͕Βɺ࣮ڥͰͷܧଓతͳਪનख๏ͷධՁʹػձଛࣦ͕͏ ӡ༻্ͷ՝
• ਪનख๏ͷ༏ྼଟ͘ͷཁҼ͔ΒͳΔঢ়گʢ=จ຺ʣʹΑͬͯࠨӈ͞ΕΔ • ޮՌతͳਪનख๏Λػձଛࣦ͕ͳ͍Α͏ʹจ຺ʹԠ͍͚͍ͯͨ͡ • ࣄલʹఆΊͨจ຺͝ͱʹਪનख๏ͷબΛࣗಈ͔ͭܧଓతʹ࠷దԽ͢Δ ϝλਪનγεςϜ • → ࠷ળͳਪનख๏ͷબΛଟόϯσΟοτͱΈͳͯ͠ղ͘
27 ݚڀͷతͱఏҊͷࠎࢠ
• ʮʯͱݺΕΔෳͷީิ͔ΒಘΒΕΔใुΛ࠷େԽ͢Δ • ϓϨΠϠʔҰͷࢼߦͰ1ͭͷΛબ͠ɺใुΛಘΔ • ͦΕͧΕͷ͋Δใुʹै͍ใुΛੜ • ͨͩ͠ɺϓϨΠϠʔ͜ͷใुΛࢼߦͷ݁Ռ͔Βਪଌ͢Δඞཁ͕͋Δ 28 ଟόϯσΟοτ
• ϓϨΠϠʔ͋Δ࣌ͷͷධՁʹج͖ͮʮ׆༻ʯͱʮ୳ࡧʯΛฒߦͯ͠ߦ͏ • ͜ͷτϨʔυΦϑΛղফ͢ΔͨΊʹ༷ʑͳղ๏͕ఏҊ͞Ε͍ͯΔ
ଟόϯσΟοτͱͷใुͷ֬ 29 Arm0 Arm1 Arm2 User(s) System ਪఆͨ֬͠ ਅͷ֬ Recommend
Click
• จ຺͝ͱʹਪનख๏ͷબΛࣗಈ͔ͭܧଓతʹ࠷దԽ͢ΔϝλਪનγεςϜ[3] • จ຺͝ͱͷ࠷ળͳબΛɺઢܗͳଟόϯσΟοτͷղ๏Ͱ͋Δ Linear Thompson SamplingΛ༻͍ͯղ͘ • จ຺ͱͯ͠ɺᶃใγεςϜͷ࣌ؒͷܦաɺᶄਪનରͷಛੑͷࠩҟΛ ѻ͏
• จ຺͝ͱʹબͨ͠ਪનख๏ͱ͜Εʹର͢Δར༻ऀͷԠΛه͠ɺબ ͷվળʹ༻͍Δ 30 ఏҊγεςϜ (Synapse) <>ࡾ༔հ ็߃ݑ 4ZOBQTFจ຺ʹԠͯ͡ܧଓతʹਪનख๏ͷબΛ࠷దԽ͢ΔਪનγεςϜ ిࢠใ௨৴ֶձจࢽ% 7PM+% /P QQ /PW UPBQQFBS
31 ఏҊγεςϜ (Synapse)
• ࣮αʔϏεͷӡ༻σʔλΛ༻͍ͨγϛϡϨʔγϣϯʹ͓͍ͯɺจ຺Λߟྀ͠ͳ ͍ͷͱൺֱͯ͠ɺྦྷੵΫϦοΫ͕2%্͢Δ͜ͱΛ֬ೝ[3] • ֘γεςϜ࣮αʔϏεͰՔಇɾܧଓతʹධՁத • ࠓޙɺऔΓѻ͑Δจ຺ɺਪનख๏Λ͍͛ͯ͘[4][5] • ߹ΘͤͯɺڥมԽͷैੑΛ্͍ͤͯ͘͞[6] 32
ఏҊγεςϜͷධՁ <>ࡒେՆɼࡾ༔հɼ&$αΠτʹ͓͚ΔӾཡཤྺΛ༻͍ͨߪങʹܨ͕ΔߦಈͷมԽݕग़ɼݚڀใࠂΠϯλʔωοτͱӡ༻ٕज़ *05 ɼ WPM*05ɼQQrɼ <>ଜ໋ɼࡾ༔հɼϋϯυϝΠυ࡞Λରͱͨ͠&$αΠτʹ͓͚Δ୯ޠͷग़ݱසΛ༻͍ͨك᧵ͷݕग़ɼݚڀใࠂΠϯλʔ ωοτͱӡ༻ٕज़ *05 ɼWPM*05ɼQQrɼ <>ࡾ༔հɼ܀ྛ݈ଠɼඇఆৗͳଟόϯσΟοτʹ͓͚ΔมԽݕग़ΞϓϩʔνͷઢܗϞσϧͷ֦ுɼݚڀใࠂΠϯλʔωο τͱӡ༻ٕज़ *05 ɼWPM*05ɼQQrɼ+VMZ
4. ·ͱΊ
• ར༻ऀͷίϯςΩετʹج͖ͮ࠷దʹৼΔ͏ʮͳΊΒ͔ͳγεςϜʯΛհ ͨ͠ • ͜ͷ࣮ݱʹ͚ͨݚڀࣄྫͱͯ͠ɺଟڥͰͷӡ༻ੑΛߟྀͨ͠Φʔτεέʔ Ϧϯά੍ޚܥΛհͨ͠ • ݚڀͳΒͼʹαʔϏεͷಋೖࣄྫͱͯ͠ɺจ຺ʹԠͨ͡ਪનख๏ͷ࠷దԽΛ ߦ͏ਪનγεςϜΛհͨ͠ •
ࠓޙɺ͜ΕΒΛؚΊͨݚڀ։ൃͷҰͷൃలΛ௨ͯ͠ʮͳΊΒ͔ͳγες ϜʯΛ࣮ݱ͍ͯ͘͠ 34 ·ͱΊ
ݚڀһɺੵۃతʹืूதʂ https://rand.pepabo.com/
ิࢿྉ
• ͝ͱʹෳͷจ຺͕͋Γɺจ຺ʹԠͯ͡ใु͕ܾ·ΔଟόϯσΟοτ ͷઃఆ • ຊݚڀใࠂͰɺจ຺ɺෳͷཁҼͷύϥϝʔλͷΈ߹ΘͤͰදݱ͞ Εͨঢ়ଶͷ͜ͱΛࢦ͢ • → ཁҼύϥϝʔλͷ͕{0,1}ͷ߹ɺจ຺ཁҼ ʹରͯ͠
ύλʔϯ d 2d 37 ઢܗͳଟόϯσΟοτ • ઢܗͳଟόϯσΟοτͷղ๏Ͱɺจ຺ͷ֬Ͱͳ͘ɺཁҼ͝ͱ ͷʢઢܗύϥϝʔλʣΛਪఆ͢Δ͜ͱͰ֤จ຺ʹ͓͚ΔใुΛ༧͢Δ
ઢܗͳଟόϯσΟοτ 38 Arm0 Arm1 Arm2 User(s) System ਪఆͨ֬͠ ਅͷ֬ Recommend
Click Context = 0 Context = 0
ઢܗͳଟόϯσΟοτ 39 Arm0 Arm1 Arm2 User(s) System ਪఆͨ֬͠ ਅͷ֬ Recommend
Click Context = 1 Context = 1