a inversa Resolvendo sistemas lineares Achando o determinante Calculando normas Resolvendo problemas lineares de mínimos quadrados e pseudo-inversas Inversa generalizada Vamos começar pelos determinantes.
vamos encontrar os detalhes para usar a função. Os Mestres já provaram que o cálculo de determinantes é inviável, na prática. Então, como o pacote scipy faz isto?
normas matriciais mais adiante. Para elas precisaremos de um pouco mais de teoria. É importantíssimo observar que todas aquelas cujo parâmetro ord é negativo não são normas.
Mestre! Quando ord = inf temos a norma do máximo. Para ord = 1 temos a norma da soma e para ord = 2 temos norma euclidiana. Elas são anotadas ∞ , 1 e 2 respectivamente. As outras são anotadas , ( = ).
+ ⋯ + 2 define uma norma. A verificação que 1 = 1 + 2 + ⋯ + é uma norma é óbvia. Da mesma forma, a comprovar que ∞ = max{ 1 , 2 , ⋯ , } define uma norma também é fácil.
com ′ = −1 . A dificuldade para provar que = |1 | + |2 | + ⋯ + | | é uma norma está na desigualdade triangular: + ≤ + . Ela é conhecida na literatura como desigualdade de Minkowski.
ao da desigualdade de Cauchy-Schwarz. Não vamos provar nenhuma das duas. Porém, se você estiver interessado, Surfista, já sabe as palavras-chave para buscar as demonstrações.
é o conjunto 2 = ∈ ℝ | 2 ≤ 1 . Ela descreve o conjunto 2 + 2 + 2 ≤ 1, que nossa intuição entende por uma bola (de futebol) no espaço euclidiano ℝ3. No plano seria como um CD (dos Beatles).
espaço ℝ com a norma do máximo é o conjunto ∞ = ∈ ℝ | ∞ ≤ 1 . No ℝ2 ela corresponde ao conjunto definido pela desigualdade max{ , } ≤ 1, mostrado na figura.
da matemática. Elas são o objeto do Cálculo diferencial e integral. Em particular, vamos considerar funções de um espaço vetorial U em um outro espaço vetorial V : : → , ∈ ⟼ = () ∈ .
⟼ ( + ) = + , • ⟼ = (). Tais funções recebem o nome especial de transformações lineares. Particularizando ainda mais: funções : → de um espaço vetorial U para outro V que preservam as operações nativas de U e V.
ℝ em ℝ através da multiplicação matriz x vetor. Uma matriz 3 x 4 define uma transformação linear ∶ ℝ4 → ℝ3, através da multiplicação: 1 2 3 = 11 12 13 14 21 22 23 24 31 32 33 34 1 2 3 4
−2 . Vemos que ela mantém a 1ª coordenada e troca o sinal da 2ª coordenada. Em outras palavras, realiza uma reflexão no eixo-x. A matriz = 1 0 0 −1 aplicada num vetor X fornece : 1 2 ⟼ 1 2 = 1 0 0 −1 1 2
de uma matriz M qualquer sobre um triângulo ABC escolhido livremente. Mostraremos alguns exemplos com diferentes matrizes M. Surfista, faça outros exemplos exploratórios.
, quando aplicada num vetor v efetua uma rotação de ângulo no sentido horário em v. Isto é, se = então o ângulo entre v e u, medido de v para u é de radianos.
é uma matriz quadrada B de ordem n tal que ∙ = ∙ = Existem matrizes que não possuem inversa – são não-inversíveis. Uma matriz não possui mais que uma inversa. Além disso, a inversa da inversa é a própria!
não-singular, i.é, det() ≠ 0 Entretanto, verificar se det() ≠ 0 para saber se A é inversível é uma técnica nunca utilizada em Álgebra linear computacional.