contorno 1 ′′ = −(′)2 − + ln() = ln() [1,2] 1 = 0 , y 2 = ln(2) 2 ′′ = 23 () = Τ 1 ( + 3) [-1,0] −1 = Τ 1 2 , 0 = Τ 1 3 3 ′′ = 3 − ′ = ( + 1)−1 [1,2] 1 = Τ 1 2 , 2 = Τ 1 3 4 ′′ = 23 − 6 − 23 = + −1 [1,2] 1 = 2, 2 = Τ 5 2 5 ′′ = ′ + 2( − ln )3 − −1 = −1 + ln() [2,3] 2 = Τ 1 2 + ln 2 , 3 = Τ 1 3 + ln(3) 6 ′′ = 4( − ) = 2(4 − 1)−1 2 − −2 + [0,1] 0 = 0, y 1 = 2 7 ′′ = y′ + 2y + cos(x) = −(se + 3 cos /10 [0, Τ 2] 0 = −0.3, y π 2 = −0.1 8 ′′ = [2(′)2 − 92 + 46]/5 = 3ln(x) [1,2] 1 = 0, 2 = ln(256) 9 ′′ + y = 0 = cos() + 2 − 1 () [0, Τ 4] 0 = 1, π/4 = 1 10 ′′ + 4 = cos() = Τ (−1 3) cos 2 − Τ 2 6 2 + Τ 1 3 cos() [0, Τ 4] 0 = 0, ( Τ 4) = 0 11 ′′ = 2y′ − y + − = Τ 3 6 − Τ 5 3 + 2 − − 2 [0,2] 0 = 0, 2 = −4 Usar partições do intervalo para solução e/ou tolerância apropriados