para trabalhar com Cálculo Numérico em Python. Ambas permitem usar a Spyder. Vamos começar examinando a Spyder, uma IDE (Interface Development Environment) extremamente facilitadora.
• aaa • bbb • ⋅⋅⋅ Classe Abc Calma minha filha, ele é tímido! Mas, recordando Python: uma classe é um padrão para criação para seus objetos. Classes possuem atributos e métodos. Cada indivíduo (objeto) de uma classe é criado com a personalização os seus atributos e métodos. Quais são seus atributos ndarray? E seus métodos? Onde, como e quando nasceu?
• ... atributos: • Nome • Raça • Sexo • Cor do pelo • ... classe: Cachorro Lembro perfeitamente do exemplo da classe cachorro dada pelo Mestre: Eu também. Meu cachorro é o Rex, um pastor alemão, macho, ... . Um objeto (gxh) da classe cachorro. ( gxh = detesto dizer que Rex é um objeto! )
invocados através do nome da classe Com os ndarrays não é diferente. Entretanto, além desses construtores de “baixo nível”, a NumPy oferece outros construtores, mais amigáveis.
para a UFRJ porque há muita coisa a aprender. Mestres, estou ficando confusa com tanta informação. Minha amiga tem razão, tornem as coisas mais práticas!
pense numa Biblioteca. Ela possui estantes, as estantes tem prateleiras, nas prateleiras há livros. Surfista e Loirinha, repitam esses programas usando tuplas no lugar de listas.
0 a π (incluíndo-os). y é o vetor obtido aplicando a função f diretamente ao vetor x Observe os vetores x e y! Neles está a magia da vetorização e difusão!
faz, Loirinha. Junta os elementos correspondentes de cada um dos vetores, x e y num novo vetor z cujos elementos z k são as tuplas z k = ( x k , y k ) Nunca ví essa função zip(x,y). O que ela faz, Mestra?
é a NumPy? • Guia do usuário e de referência; • Definição de ndarray (array = vetor ou matriz ou ...): • Atributos básicos, tipos de dados e métodos; • Criando ndarrays a partir de listas e tuplas; • As magias da vetorização e da difusão; • Criando ndarrays com características específicas: • arange, linspace, logspace e meshgrid; • zeros, ones, identity, diag, eye; • tri, triu, tril, vandermonde; • A classe Matrix; • Apêndice 1: NumPy para usuários da MatLab; • Apêndice 2: Layout de um Ndarray na memória. Neste conjunto de transparências estudamos a parte básica da Numpy. Eis um resumo do que vimos: