Upgrade to Pro — share decks privately, control downloads, hide ads and more …

JavaでDeep Learningしよう

Avatar for radiocat radiocat
September 27, 2017

JavaでDeep Learningしよう

Avatar for radiocat

radiocat

September 27, 2017
Tweet

More Decks by radiocat

Other Decks in Technology

Transcript

  1. DL以前の基礎知識 1. 人工知能とディープラーニングの変遷 ➢ DL誕生までの歴史的背景について • 人工知能技術の変遷について • 機械学習が直面した問題 •

    AIの第一次ブーム〜第三次ブーム • ディープラーニングの誕生 2. 機械学習アルゴリズムを学ぶ - ディープ ラーニングへの準備 ➢ 機械学習の基礎とDL前夜のアルゴリズムに ついて • 教師あり学習と教師なし学習 • サポートベクトルマシン • ニューラルネットワーク • パーセプトロン • 多層パーセプトロン
  2. DLのアルゴリズムの解説 3. ディープラーニング探求 <1> ➢ DLの基本となるアルゴリズムの解説 ➢ 数式の理論とそれをJavaコード化したサンプ ルプログラムの解説 •

    ニューラルネットワークの問題点 • ディープビリーフネット • 積層デノイジング・オートエンコーダ 4. ディープラーニング探求 <2> ➢ 前章を発展させたDLアルゴリズムの解説 ➢ 理論とサンプルコードによる解説 • ドロップアウト • 畳み込みニューラルネットワーク • ニューラルネットワーク • パーセプトロン • 多層パーセプトロン
  3. DL4Jの解説/DLの応用と今後の展望 5. JavaライブラリDeeplearning4jの活用 ➢ ライブラリの紹介 ➢ サンプルコードによる実装方法の解説 • DL4JとND4Jの概要 •

    ND4Jによる実装 • DL4Jによる実装 6. ディープラーニングの応用と実用化 ◦ DLの活用事例 ◦ DLの課題 7. ディープラーニング探求 <3> ◦ Java以外のライブラリの紹介 8. 今後の動向を展望する ◦ AlphaGoなどの事例 ◦ DL動向の情報源 サンプルコード https://book.impress.co.jp/books/1115101146#box-download https://github.com/radiocat/DLJ
  4. DL4J(Deeplearning4j)とは • https://deeplearning4j.org/index.html • JavaのDeepLearningライブラリ • Apache 2.0ライセンスのOSS • CPUとGPUをサポート

    • Skymind社が中心となって開発 関連ライブラリ:ND4J(N-Dimensional arrays 4j) • http://nd4j.org/getstarted.html • 行列操作などに使う科学的計算ライブラリ( PythonのNumpyのようなツール) • Numpyの2倍の速さ
  5. サンプルプログラム DL4Jのクイックスタートガイドを参照( https://deeplearning4j.org/ja/quickstart) 必須要件 • Java 7+ • Maven 3.2.5+

    • Git(サンプルプログラムの取得) サンプルコードの取得と事前準備 $ git clone [email protected]:deeplearning4j/dl4j-examples.git $ cd dl4j-examples/ $ mvn clean install
  6. • 取得したサンプルコードの nd4j-examples フォルダ以下 • 全部で12個のサンプル 行列の定義 • 2行3列のゼロの行列⇒ INDArray

    nd1 = Nd4j.zeros(3, 2); • 2行3列⇒ INDArray nd2 = Nd4j.create(new float[][]{{1,2,3},{4,5,6}}); 演算 • 和: INDArray nd3 = nd1.add(nd2); • 差: INDArray nd3 = nd1.sub(nd2); • スカラー: INDArray nd3 = nd1.mul(10); • 内積: INDArray nd3 = nd1.mmul(nd2); ND4J
  7. DL4J • サンプルコードの dl4j-examples フォルダ以下 • 豊富なサンプル DLのモデル構築に集中できるフレームワーク • 基本的にはNeuralNetConfigurationでBuilderパターンを使う

    • CSVや画像からベクトルへの変換はフレームワークがサポート • UIツールもある https://deeplearning4j.org/ja/visualization その他の特徴 • Apache Spark対応 https://deeplearning4j.org/spark • Kotlinでの実装 https://github.com/deeplearning4j/dl4j-examples/tree/master/dl4j-examples • Androidへのビルド https://deeplearning4j.org/android
  8. おなじみMNIST(MLPMnistSingleLayerExample) MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder() .seed(rngSeed) //include a random

    seed for reproducibility // use stochastic gradient descent as an optimization algorithm .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) .iterations(1) .learningRate(0.006) //specify the learning rate .updater(Updater.NESTEROVS) .regularization(true).l2(1e-4) .list() .layer(0, new DenseLayer.Builder() //create the first, input layer with xavier initialization .nIn(numRows * numColumns) .nOut(1000) .activation(Activation.RELU) .weightInit(WeightInit.XAVIER) .build()) .layer(1, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD) //create hidden layer .nIn(1000) .nOut(outputNum) .activation(Activation.SOFTMAX) .weightInit(WeightInit.XAVIER) .build()) .pretrain(false).backprop(true) //use backpropagation to adjust weights .build(); TensorFlowの場合:https://github.com/tensorflow/tensorflow/blob/r1.3/tensorflow/examples/tutorials/mnist/mnist_softmax.py
  9. 参考 • Deeplearning4j /https://github.com/deeplearning4j • DeepLearning4Jの紹介 - Qiita / https://qiita.com/wmeddie/items/8f036e3eadfa3e012eed

    • MNIST For ML Beginners | TensorFlow /https://www.tensorflow.org/get_started/mnist/beginners • ND4J - Javaでベクトルとか行列を定義する - 覚えたら書く / http://blog.y-yuki.net/entry/2017/01/03/000000 • ブログも書きました ◦ 【勉強会メモ】オオサカプログラミングスクール「 Javaerだらけのディープラーニング研究会 第5章」 - radioc@? / http://radiocat.hatenablog.com/entry/2017/09/20/000000