$30 off During Our Annual Pro Sale. View Details »

Statistical Rethinking 2023 - Lecture 01

Statistical Rethinking 2023 - Lecture 01

Course description and materials: https://github.com/rmcelreath/stat_rethinking_2023

Richard McElreath

January 02, 2023
Tweet

More Decks by Richard McElreath

Other Decks in Education

Transcript

  1. Statistical Rethinking
    1. The Golem of Prague
    2023

    View Slide

  2. Texts in Statistical Science
    Richard McElreath
    McElreath
    Statistical Rethinking
    A Bayesian Course
    with Examples in R and Stan
    SECOND EDITION
    Second
    Edition
    Statistical Rethinking
    F ESBę
    'ĶĴłĿIJ ƊƉ *MMVTUSBUJPO PG .BSUJO #FIBJNT
    HMPCF TIPXJOH UIF TNBMM XPSME UIBU
    $PMPNCP BOUJDJQBUFE &VSPQF MJFT PO UIF SJHIU
    IBOE TJEF "TJB MJFT PO UIF MFę ćF CJH JTMBOE
    MBCFMFE i$JQBOHVw JT +BQBO
    XPSMET VTJOH UIF TUSFOHUIT PG RVBMJUBUJWF JOTJHIU UP DSJUJDJ[F TNBMM XPSME RVBOUJUBUJWF JOTJHIU
    ćF QSFDJTJPO BOE USBOTQBSFODZ PG UIF TNBMM XPSME JT QPXFSGVM BOE FTTFOUJBM #VU JU JT WFSZ
    EJďDVMU UP JODPSQPSBUF BMM PG PVS TDJFOUJĕD LOPXMFEHF BOE FYQFSUJTF JOUP UIF TNBMM XPSME 4P
    PęFO XF SFBMJ[F IPX CBE B NPEFM JT POMZ XIFO XF TFF IPX CBEMZ JU CFIBWFT JO UIF CSPBEFS
    TDJFOUJĕD DPOUFYU
    *O UIJT DIBQUFS ZPV XJMM CFHJO UP CVJME #BZFTJBO NPEFMT "MNPTU BMM PG UIF XPSL JO UIJT
    DIBQUFS UBLFT QMBDF JO UIF TNBMM XPSME 8FMM TUBSU XJUI B TJNQMF HPBM FTUJNBOE
    8IBU QSP
    QPSUJPO PG UIF &BSUIT TVSGBDF JT DPWFSFE CZ XBUFS ćJT JT B EFTDSJQUJWF FTUJNBOE CVU JU TUJMM
    SFRVJSFT DBVTBM BTTVNQUJPOT BCPVU IPX UIF TBNQMF BSJTFT 0ODF UIPTF BTTVNQUJPOT BSF JO
    QMBDF XFMM VTF #BZFTJBO JOGFSFODF UP QSPEVDF BO FTUJNBUF
    3FUIJOLJOH 'BTU BOE GSVHBM JO UIF MBSHF XPSME ćF OBUVSBM XPSME JT DPNQMFY BT USZJOH UP EP TDJFODF
    TFSWFT UP SFNJOE VT :FU FWFSZUIJOH GSPN UIF IVNCMF UJDL UP UIF JOEVTUSJPVT TRVJSSFM UP UIF JEMF TMPUI
    NBOBHFT UP GSFRVFOUMZ NBLF BEBQUJWF EFDJTJPOT #VU JUT B HPPE CFU UIBU NPTU BOJNBMT BSF OPU #BZFTJBO
    JG POMZ CFDBVTF CFJOH #BZFTJBO JT FYQFOTJWF BOE EFQFOET VQPO IBWJOH B HPPE NPEFM *OTUFBE BOJNBMT
    VTF WBSJPVT IFVSJTUJDT UIBU BSF ĕU UP UIFJS FOWJSPONFOUT QBTU PS QSFTFOU ćFTF IFVSJTUJDT UBLF BEBQUJWF
    TIPSUDVUT BOE TP NBZ PVUQFSGPSN B SJHPSPVT #BZFTJBO BOBMZTJT PODF DPTUT PG JOGPSNBUJPO HBUIFSJOH
    BOE QSPDFTTJOH BOE PWFSĕUUJOH $IBQUFS
    BSF UBLFO JOUP BDDPVOU 0ODF ZPV BMSFBEZ LOPX XIJDI
    JOGPSNBUJPO UP JHOPSF PS BUUFOE UP CFJOH GVMMZ #BZFTJBO JT B XBTUF *UT OFJUIFS OFDFTTBSZ OPS TVďDJFOU
    GPS NBLJOH HPPE EFDJTJPOT BT SFBM BOJNBMT EFNPOTUSBUF #VU GPS IVNBO BOJNBMT #BZFTJBO BOBMZTJT
    QSPWJEFT B HFOFSBM XBZ UP EJTDPWFS SFMFWBOU JOGPSNBUJPO BOE QSPDFTT JU MPHJDBMMZ
    ćF HBSEFO PG GPSLJOH EBUB
    0VS HPBM JO UIJT TFDUJPO JT UP CVJME #BZFTJBO JOGFSFODF VQ GSPN IVNCMF CFHJOOJOHT TP
    UIFSF JT OP TVQFSTUJUJPO BCPVU JU #BZFTJBO JOGFSFODF JT SFBMMZ KVTU DPVOUJOH BOE DPNQBSJOH PG
    QPTTJCJMJUJFT 8F NBLF DBVTBM BTTVNQUJPOT XF FOVNFSBUF UIF JNQMJDBUJPOT PG UIPTF BTTVNQ
    THIRD

    View Slide

  3. F ESBę
    4."-- 803-%4 "/% -"3(& 803-%4
    'ĶĴłĿIJ ƊƉ *MMVTUSBUJPO PG .BSUJO #FIBJNT
    HMPCF TIPXJOH UIF TNBMM XPSME UIBU
    $PMPNCP BOUJDJQBUFE &VSPQF MJFT PO UIF SJHIU
    IBOE TJEF "TJB MJFT PO UIF MFę ćF CJH JTMBOE
    MBCFMFE i$JQBOHVw JT +BQBO
    XPSMET VTJOH UIF TUSFOHUIT PG RVBMJUBUJWF JOTJHIU UP DSJUJDJ[F TNBMM XPSME RVBOUJUBUJWF JOTJHIU
    ćF QSFDJTJPO BOE USBOTQBSFODZ PG UIF TNBMM XPSME JT QPXFSGVM BOE FTTFOUJBM #VU JU JT WFSZ
    EJďDVMU UP JODPSQPSBUF BMM PG PVS TDJFOUJĕD LOPXMFEHF BOE FYQFSUJTF JOUP UIF TNBMM XPSME 4P
    PęFO XF SFBMJ[F IPX CBE B NPEFM JT POMZ XIFO XF TFF IPX CBEMZ JU CFIBWFT JO UIF CSPBEFS
    TDJFOUJĕD DPOUFYU
    *O UIJT DIBQUFS ZPV XJMM CFHJO UP CVJME #BZFTJBO NPEFMT "MNPTU BMM PG UIF XPSL JO UIJT
    DIBQUFS UBLFT QMBDF JO UIF TNBMM XPSME 8FMM TUBSU XJUI B TJNQMF HPBM FTUJNBOE
    8IBU QSP
    QPSUJPO PG UIF &BSUIT TVSGBDF JT DPWFSFE CZ XBUFS ćJT JT B EFTDSJQUJWF FTUJNBOE CVU JU TUJMM
    SFRVJSFT DBVTBM BTTVNQUJPOT BCPVU IPX UIF TBNQMF BSJTFT 0ODF UIPTF BTTVNQUJPOT BSF JO
    QMBDF XFMM VTF #BZFTJBO JOGFSFODF UP QSPEVDF BO FTUJNBUF
    3FUIJOLJOH 'BTU BOE GSVHBM JO UIF MBSHF XPSME ćF OBUVSBM XPSME JT DPNQMFY BT USZJOH UP EP TDJFODF
    TFSWFT UP SFNJOE VT :FU FWFSZUIJOH GSPN UIF IVNCMF UJDL UP UIF JOEVTUSJPVT TRVJSSFM UP UIF JEMF TMPUI
    NBOBHFT UP GSFRVFOUMZ NBLF BEBQUJWF EFDJTJPOT #VU JUT B HPPE CFU UIBU NPTU BOJNBMT BSF OPU #BZFTJBO
    JG POMZ CFDBVTF CFJOH #BZFTJBO JT FYQFOTJWF BOE EFQFOET VQPO IBWJOH B HPPE NPEFM *OTUFBE BOJNBMT
    VTF WBSJPVT IFVSJTUJDT UIBU BSF ĕU UP UIFJS FOWJSPONFOUT QBTU PS QSFTFOU ćFTF IFVSJTUJDT UBLF BEBQUJWF
    TIPSUDVUT BOE TP NBZ PVUQFSGPSN B SJHPSPVT #BZFTJBO BOBMZTJT PODF DPTUT PG JOGPSNBUJPO HBUIFSJOH
    BOE QSPDFTTJOH BOE PWFSĕUUJOH $IBQUFS
    BSF UBLFO JOUP BDDPVOU 0ODF ZPV BMSFBEZ LOPX XIJDI
    JOGPSNBUJPO UP JHOPSF PS BUUFOE UP CFJOH GVMMZ #BZFTJBO JT B XBTUF *UT OFJUIFS OFDFTTBSZ OPS TVďDJFOU
    GPS NBLJOH HPPE EFDJTJPOT BT SFBM BOJNBMT EFNPOTUSBUF #VU GPS IVNBO BOJNBMT #BZFTJBO BOBMZTJT
    QSPWJEFT B HFOFSBM XBZ UP EJTDPWFS SFMFWBOU JOGPSNBUJPO BOE QSPDFTT JU MPHJDBMMZ
    Changes and updates
    Fewer examples, more depth
    Detailed workflow, testing
    Interventions, post-stratification
    Foreground measurement, missing
    Sensitivity analysis

    View Slide

  4. DAGS

    View Slide

  5. GOLEMS
    DAGS

    View Slide

  6. OWLS
    DAGS
    GOLEMS

    View Slide

  7. DAGS
    OWLS
    GOLEMS

    View Slide

  8. View Slide

  9. View Slide

  10. Science Before Statistics
    For statistical models to produce scientific insight, they
    require additional scientific (causal) models
    The reasons for a statistical analysis are not found in the data
    themselves, but rather in the causes of the data
    The causes of the data cannot be extracted from the data
    alone. No causes in; no causes out.

    View Slide

  11. What is Causal Inference?
    More than association between
    variables
    Causal inference is prediction of
    intervention
    Causal inference is imputation of
    missing observations

    View Slide

  12. Causal Prediction
    Knowing a cause means being able to predict
    the consequences of an intervention. 

    What if I do this?

    View Slide

  13. Causal Imputation
    Knowing a cause means being able to construct
    unobserved counterfactual outcomes. 

    What if I had done something else?

    View Slide

  14. Causal Inference
    Description
    Design

    View Slide

  15. Causes Are Not Optional
    Even when goal is descriptive, need
    causal model
    The sample differs from the population;
    describing the population requires
    causal thinking about why

    View Slide

  16. DAGs
    Directed Acyclic Graphs
    Heuristic causal models
    Clarify scientific thinking
    Analyze to deduce appropriate statistical models
    “What can we decide, without additional assumptions?”
    Gateway to scientific modeling
    s
    * "
    u

    View Slide

  17. DAGs
    H 2i HX kyReVV rQmH/ K2bm`2 i?2 +
    s
    * "
    u

    View Slide

  18. DAGs
    H 2i HX kyReVV rQmH/ K2bm`2 i?2 +
    s
    * "
    u

    View Slide

  19. DAGs
    H 2i HX kyReVV rQmH/ K2bm`2 i?2 +
    s
    * "
    u

    View Slide

  20. DAGs
    H 2i HX kyReVV rQmH/ K2bm`2 i?2 +
    s
    * "
    u

    View Slide

  21. DAGs
    H 2i HX kyReVV rQmH/ K2bm`2 i?2 +
    s
    * "
    u

    View Slide

  22. DAGs
    H 2i HX kyReVV rQmH/ K2bm`2 i?2 +
    s
    * "
    u

    View Slide

  23. s
    * "
    u
    DAGs
    Different queries, different models
    Which control variables?
    Absolute not safe to add everything — bad controls
    How to test/refine the causal model?
    DAGs are intuition pumps: get head out of data, into science

    View Slide

  24. GOLEMS
    DAGS

    View Slide

  25. Prague 16th century

    View Slide

  26. Rabbi Löw (1512–1609)

    View Slide

  27. Golems
    Clay robots
    Powerful
    No wisdom or foresight
    Dangerous
    “Breath of Bones: A Tale of the Golem” (2014)

    View Slide

  28. Statistical Models
    5)& (0-&. 0' 13"(6&
    Clay robots
    Powerful
    No wisdom or foresight
    Dangerous

    View Slide

  29. Figure 1.1

    View Slide

  30. Statistical Models
    Incredibly limiting
    Focus on rejecting null
    hypotheses
    Relationship between research
    and test not clear
    Industrial framework
    5)& (0-&. 0' 13"(6&

    View Slide

  31. View Slide

  32. Null Models Rarely Unique
    Null population dynamics?
    Null phylogeny?
    Null ecological community?
    Null social network?
    Problem: Many processes
    produce similar distributions

    View Slide

  33. View Slide

  34. H0
    H1
    “Evolution
    is neutral”
    “Selection

    matters”
    P0A
    Neutral,
    non-equilibrium
    P0B
    Neutral,
    equilibrium
    P1B
    Fluctuating
    selection
    P1A
    Constant
    selection
    MI
    MII
    MIII
    Hypotheses Process models Statistical models
    Figure 1.2

    View Slide

  35. H0
    “Evolution
    is neutral”
    P0A
    Neutral,
    equilibrium
    MII
    Hypotheses Process models Statistical models
    Figure 1.2

    View Slide

  36. H0
    “Evolution
    is neutral”
    P0A
    Neutral,
    non-equilibrium
    P0B
    Neutral,
    equilibrium MI
    MII
    Hypotheses Process models Statistical models
    Figure 1.2

    View Slide

  37. H0
    H1
    “Evolution
    is neutral”
    “Selection

    matters”
    P0A
    Neutral,
    non-equilibrium
    P0B
    Neutral,
    equilibrium
    P1B
    Fluctuating
    selection
    P1A
    Constant
    selection
    MI
    MII
    MIII
    Hypotheses Process models Statistical models
    Figure 1.2

    View Slide

  38. View Slide

  39. SPECIES
    a
    b
    species
    per
    island
    ISLANDS
    A B C
    1 0 1
    0 1 0
    1 1 i 1
    islands
    per
    D species
    0 2
    i 2
    Fig. 3. Example of a simple presence/absence matrix with a checker-
    board distribution: four islands and two species
    islands and are absent from species-rich islands (see Fig. 2 right,
    which has a supertramp as species e but has the same row
    sums and grand total as Fig. 2 left).
    Now compare the rearrangeability of the two matrices of
    Fig. 2. Recall that the rearrangement algorithm by which Connor
    and Simberloff generate simulated matrices seeks 2 by 2 subma-
    trices (not necessarily in adjacent rows or columns) of the form
    10)
    1)o (0,
    (?0
    and changes them to the opposite form. This manipulation alters
    neither row nor column sums and hence maintains the con-
    Islands
    00101011110100001110
    Ii010100001011110001
    00101111001001001110
    11010000110110110001
    10110000000011111011
    01001111111100000100
    10011101011001001100
    01100010100110110011
    00101011100100110110
    Species ii010100011011001001
    11010111100001011000
    00101000011110100111
    i0000111100011001110
    01111000011100110001
    11001100100111000110
    00110011011000111001
    00010101101011101010
    11101010010100010101
    01101101010001010101
    10010010101110101010
    Conor & Simberloff 1979, Diamond & Gilpin 1982
    Species
    Locations
    No null ecology

    View Slide

  40. Null networks & fantastical beasts
    Figure 1: Dependence structure between data points must not change under permutations. In node-
    .
    CC-BY-NC-ND 4.0 International license
    available under a
    was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
    The copyright holder for this preprint (which
    this version posted June 7, 2021.
    ;
    https://doi.org/10.1101/2021.06.04.447124
    doi:
    bioRxiv preprint
    Hart et al 2021
    Network permutation methods: low power, high false positives

    View Slide

  41. Sankararaman et al 2012
    Neandertal-Human interbreeding

    View Slide

  42. Sankararaman et al 2015
    Neandertal-Human interbreeding
    Ancient population sub-structure

    View Slide

  43. Hypotheses and Models
    Research requires more than null robots
    Also requires:
    Generative causal models
    Statistical models justified by generative
    models & questions (estimands)
    An effective way to produce estimates

    View Slide

  44. Justifying “controls”
    H 2i HX kyReVV rQmH/ K2bm`2 i?2 +
    s
    * "
    u

    View Slide

  45. Justifying “controls”
    bBQM US2`H 2i HX kyReVV rQmH/ K2bm`2 i?
    s
    * "
    u
    Y ~ X
    Y ~ X + A
    Y ~ X + A + B
    Y ~ X + C
    Y ~ X + A + C
    Y ~ X + B + C

    View Slide

  46. Justifying “controls”
    bBQM US2`H 2i HX kyReVV rQmH/ K2bm`2 i?
    s
    * "
    u
    Y ~ X
    Y ~ X + A
    Y ~ X + A + B
    Y ~ X + C
    Y ~ X + A + C
    Y ~ X + B + C
    “Adjustment set”

    View Slide

  47. Finite data, infinite problems
    DAG is not enough
    Need generative model to design/
    debug inference
    Need a strategy to derive estimate
    and uncertainty
    Easiest approach: Bayesian data
    analysis
    F
    /PUJDF UIBU FWFO UIPVHI UIF UISFF XIJUF TJEFT MPPL UIF TBNF GSPN
    KVTU SFDPSE UIF DPMPS PG UIF TJEFT BęFS BMM‰UIFZ BSF SFBMMZ EJČFSFOU F
    CFDBVTF JU NFBOT UIBU UIFSF BSF UISFF NPSF XBZT UP TFF UIBO UP TFF
    /PX DPOTJEFS UIF HBSEFO BT XF HFU BOPUIFS UPTT PG UIF HMPCF *U
    POF MBZFS
    /PX UIFSF BSF QPTTJCMF QBUIT UISPVHI UIF HBSEFO POF GPS FBDI
    TFDPOE ESBX GSPN UIF CBH FBDI PG UIF QBUIT BCPWF BHBJO GPSLT JOUP GP
    #FDBVTF XF CFMJFWF UIBU FBDI UPTT PG UIF HMPCF HJWFT FBDI TJEF B GBJS
    SFHBSEMFTT PG XIJDI TJEFT XBT TBNQMFE QSFWJPVTMZ ćF UIJSE MBZFS J

    View Slide

  48. Bayes is practical, not philosophical
    Simple analyses: little difference,
    adds mess
    Realistic analyses: huge difference
    Measurement error, missing data,
    latent variables, regularization
    Bayesian models are generative

    View Slide

  49. Statistics wars are over
    Bayes no longer controversial or
    marginalized
    Bayesian methods routine
    Waiting for teaching to catch up
    The action is in machine learning,
    which has different battles

    View Slide

  50. OWLS
    DAGS
    GOLEMS

    View Slide

  51. 1. Draw some circles
    HOW TO DRAW AN OWL

    View Slide

  52. 1. Draw some circles 2. Draw the rest of the owl
    HOW TO DRAW AN OWL

    View Slide

  53. 1. Draw some circles 2. Draw the rest of the owl
    HOW TO DRAW AN OWL

    View Slide


  54. 3 DPEF

    # function to toss a globe covered p by water N times
    sim_globe <- function( p=0.7 , N=9 ) {
    sample(c("W","L"),size=N,prob=c(p,1-p),replace=TRUE)
    }
    /PUIJOH IBQQFOT VOUJM XF DBMM UIF GVODUJPO CZ JUT OBNF
    3 DPEF

    sim_globe()
    [1] "L" "W" "W" "W" "L" "L" "L" "W" "L"
    3FQFBU DBMMJOH UIF GVODUJPO UP TFF UIBU JU TJNVMBUFT B EJČFSFOU TBNQMF FBDI UJNF "OE CZ
    OBNJOH UIF QSPQPSUJPO PG XBUFS p BOE OVNCFS PG UPTTFT N JO UIF GVODUJPO EFĕOJUJPO XF DBO
    FBTJMZ DIBOHF UIFTF WBMVFT XIFO XF DBMM UIF GVODUJPO

    26"-*5: "4463"/$&
    # function to compute posterior distribution
    compute_posterior <- function( the_sample , poss=c(0,0.25,0.5,0.75,1) ) {
    W <- sum(the_sample=="W") # number of W observed
    L <- sum(the_sample=="L") # number of L observed
    ways <- sapply( poss , function(q) (q*4)^W * ((1-q)*4)^L )
    post <- ways/sum(ways)
    bars <- sapply( post, function(q) make_bar(q) )
    data.frame( poss , ways , post=round(post,3) , bars )
    }
    5P VTF UIJT GVODUJPO ZPV OFFE UP HJWF JU B TBNQMF "OE XF DBO KVTU FNCFE UIF QSFWJPVT
    TJNVMBUJPO GVODUJPO JOTJEF JU
    3 DPEF

    compute_posterior( sim_globe() )
    poss ways post bars
    1 0.00 0 0.000
    2 0.25 243 0.291 ######
    3 0.50 512 0.612 ############
    4 0.75 81 0.097 ##
    5 1.00 0 0.000
    SBę
    26"-*5: "4463"/$&
    # function to compute posterior distribution
    compute_posterior <- function( the_sample , poss=c(0,0.25,0.5,0.75,1) ) {
    W <- sum(the_sample=="W") # number of W observed
    L <- sum(the_sample=="L") # number of L observed
    ways <- sapply( poss , function(q) (q*4)^W * ((1-q)*4)^L )
    post <- ways/sum(ways)
    bars <- sapply( post, function(q) make_bar(q) )
    data.frame( poss , ways , post=round(post,3) , bars )
    }
    5P VTF UIJT GVODUJPO ZPV OFFE UP HJWF JU B TBNQMF "OE XF DBO KVTU FNCFE UIF QSFWJPVT
    TJNVMBUJPO GVODUJPO JOTJEF JU
    3

    compute_posterior( sim_globe() )
    poss ways post bars
    1 0.00 0 0.000
    2 0.25 243 0.291 ######
    3 0.50 512 0.612 ############
    4 0.75 81 0.097 ##
    5 1.00 0 0.000
    3FQFBU UIJT GVODUJPO DBMM B GFX UJNFT UP TIPX UIBU BT UIF TBNQMF WBSJFT TP UPP EPFT UIF QPTUF
    SJPS EJTUSJCVUJPO
    ę
    4."-- 803-%
    0 0.2 0.4 0.6 0.8 1
    proportion water
    posterior probability
    0.00 0.05 0.10 0.15 0.20 0.25 0.30
    11 possibilities
    1
    2
    3
    4

    View Slide

  55. Drawing the Bayesian Owl
    Scientific data analyses: 

    Amateur software engineering
    Three modes:
    Understand what you are doing
    Document your work, reduce error
    Respectable scientific workflow

    View Slide

  56. Drawing the Bayesian Owl
    1. Theoretical estimand
    2. Scientific (causal) model(s)
    3. Use 1 & 2 to build statistical model(s)
    4. Simulate from 2 to validate 3 yields 1
    5. Analyze real data

    View Slide

  57. Drawing the Bayesian Owl
    1. Theoretical estimand
    2. Scientific (causal) model(s)
    3. Use 1 & 2 to build statistical model(s)
    4. Simulate from 2 to validate 3 yields 1
    5. Analyze real data

    View Slide

  58. Drawing the Bayesian Owl
    1. Theoretical estimand
    2. Scientific (causal) model(s)
    3. Use 1 & 2 to build statistical model(s)
    4. Simulate from 2 to validate 3 yields 1
    5. Analyze real data

    View Slide

  59. Drawing the Bayesian Owl
    1. Theoretical estimand
    2. Scientific (causal) model(s)
    3. Use 1 & 2 to build statistical model(s)
    4. Simulate from 2 to validate 3 yields 1
    5. Analyze real data

    View Slide

  60. Drawing the Bayesian Owl
    1. Theoretical estimand
    2. Scientific (causal) model(s)
    3. Use 1 & 2 to build statistical model(s)
    4. Simulate from 2 to validate 3 yields 1
    5. Analyze real data

    View Slide

  61. DAGs, Golems & Owls
    DAGs: Transparent scientific assumptions to 

    justify scientific effort

    expose it to useful critique

    connect theories to golems
    Golems: Brainless, powerful statistical models
    Owls: Documented procedures, quality assurance

    View Slide

  62. Model
    Theory
    Evidence

    View Slide

  63. Course Schedule
    Week 1 Bayesian inference Chapters 1, 2, 3
    Week 2 Linear models & Causal Inference Chapter 4
    Week 3 Causes, Confounds & Colliders Chapters 5 & 6
    Week 4 Overfitting / Interactions Chapters 7 & 8
    Week 5 MCMC & Generalized Linear Models Chapters 9, 10, 11
    Week 6 Integers & Other Monsters Chapters 11 & 12
    Week 7 Multilevel models I Chapter 13
    Week 8 Multilevel models II Chapter 14
    Week 9 Measurement & Missingness Chapter 15
    Week 10 Generalized Linear Madness Chapter 16
    https://github.com/rmcelreath/stat_rethinking_2023

    View Slide