Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Day1-1030-OSM in Aizuwakamatsu city: Constructi...
Search
sotm2017
September 01, 2017
Research
1
110
Day1-1030-OSM in Aizuwakamatsu city: Construction of a hazard map
sotm2017
September 01, 2017
Tweet
Share
More Decks by sotm2017
See All by sotm2017
Day1-1100-How to build up an OSM Community
sotm2017
0
370
Day1-1440-High precision mapping with streetlevel imagery
sotm2017
0
190
Day1-1030-Mobile app development with routing and voice navigation
sotm2017
0
110
Day1-1200-Mapping with a time dimension
sotm2017
0
79
Day1-1230-New opportunities for understanding the ancient coastline
sotm2017
0
89
Day1-1410-Challenges in geonames and address extraction
sotm2017
0
150
Day1-1440-One road goes a long way: measuring the impact of maps on fighting FGM in Tanzania
sotm2017
0
120
Day2-0930-Taking on responsibility for OSM data
sotm2017
0
65
Day2-1000-MapRoulette: One million corrections and beyond
sotm2017
0
71
Other Decks in Research
See All in Research
論文読み会 SNLP2024 Instruction-tuned Language Models are Better Knowledge Learners. In: ACL 2024
s_mizuki_nlp
1
350
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
230
Weekly AI Agents News! 10月号 プロダクト/ニュースのアーカイブ
masatoto
1
110
第79回 産総研人工知能セミナー 発表資料
agiats
2
160
いしかわ暮らしセミナー~移住にまつわるお金の話~
matyuda
0
150
KDD論文読み会2024: False Positive in A/B Tests
ryotoitoi
0
200
Weekly AI Agents News! 8月号 論文のアーカイブ
masatoto
1
180
Weekly AI Agents News! 8月号 プロダクト/ニュースのアーカイブ
masatoto
1
190
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
55
19k
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
eumesy
PRO
7
1.2k
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
660
LiDARとカメラのセンサーフュージョンによる点群からのノイズ除去
kentaitakura
0
130
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
334
57k
Rails Girls Zürich Keynote
gr2m
94
13k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Imperfection Machines: The Place of Print at Facebook
scottboms
265
13k
[RailsConf 2023] Rails as a piece of cake
palkan
52
4.9k
Practical Orchestrator
shlominoach
186
10k
Speed Design
sergeychernyshev
24
610
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Transcript
OSM in Aizuwakamatsu city: Construction of a hazard map
None
OSM Fukushima
Aizuwakamatsu City Hall
None
None
None
None
None
None
None
Tsurugajo
Sazae dou
Sazae dou
None
None
None
Over 1.9 million photos
April 2008 Fukushima area 2008
Fukushima area June 2009 2009
2017 • コミュニティによって市内す べての建物が作成された
2011/3/1
None
None
Mountain area Agagawa river
• 災害情報を最新の内容にアップデートする必要があ る • 建物や道路の状況を最新にする必要がある • ハザードマップを職員が管理可能にする • update disaster
information • update buildings and roads • Enable staff to manage hazard map
• 災害情報を最新の内容にアップデートする必要があ る • 建物や道路の状況を最新にする必要がある • ハザードマップを職員が管理可能にする • update disaster
information • update buildings and roads • Enable staff to manage hazard map
None
Aizu terrain
Disaster of Aizu building=yes building:material=stone height=11 amenity=bench backrest=no colour=brown material=wood
seats=3
None
行 1 行 2 行 3 行 4 0 2
4 6 8 10 12 列 1 列 2 列 3 Explaining...
QGIS and Disaster Data • Distributed by Fukushima prefectural government
• Contains – QGIS – Disaster Data
None
SRTM • Shuttle Rader Topography Mission • スペースシャトルからのレー ザー計測による地表面の地形 データ
Generate contour
Import buildings and roads
Addming landslide disaster area
Adding river flooded area
Shelter and public facilities
None
None
Distributed 50,000 paper maps
None
None
None
Aizu Misato Hazardmap Aizu Misato Hazardmap
None
Mapping school (hosted by Aizuwakamatsu City GIS Reserch Team)
None
None
None
OSM Fukushima