Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Django with AWS native services.
Search
Kosei Kitahara
January 12, 2018
Technology
0
63
Django with AWS native services.
Django AWS native なサービスとして開発する
Kosei Kitahara
January 12, 2018
Tweet
Share
More Decks by Kosei Kitahara
See All by Kosei Kitahara
Twelve-Factor Python (Django) Application with Docker
surgo
0
460
Other Decks in Technology
See All in Technology
Strands Agents & Bedrock AgentCoreを1分でおさらい
minorun365
PRO
6
150
Microsoft Clarityでインサイトを見つけよう
nakasho
0
120
From Live Coding to Vibe Coding with Firebase Studio
firebasethailand
1
410
AI によるドキュメント処理を加速するためのOCR 結果の永続化と再利用戦略
tomoaki25
0
320
AIエージェントを支える設計
tkikuchi1002
12
2.9k
마라톤 끝의 단거리 스퍼트: 2025년의 AI
inureyes
PRO
1
520
少人数でも回る! DevinとPlaybookで支える運用改善
ishikawa_pro
5
2.1k
【CEDEC2025】現場を理解して実現!ゲーム開発を効率化するWebサービスの開発と、利用促進のための継続的な改善
cygames
PRO
0
660
風が吹けばWHOISが使えなくなる~なぜWHOIS・RDAPはサーバー証明書のメール認証に使えなくなったのか~
orangemorishita
15
5.1k
AI時代の知識創造 ─GeminiとSECIモデルで読み解く “暗黙知”と創造の境界線
nyagasan
0
190
Rubyの国のPerlMonger
anatofuz
2
690
メモ整理が苦手な者による頑張らないObsidian活用術
optim
1
180
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Designing for humans not robots
tammielis
253
25k
Art, The Web, and Tiny UX
lynnandtonic
301
21k
Into the Great Unknown - MozCon
thekraken
40
1.9k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Code Review Best Practice
trishagee
69
19k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
A better future with KSS
kneath
238
17k
Embracing the Ebb and Flow
colly
86
4.8k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Transcript
Django with AWS native services Django を AWS native なサー
ビスとして開発する By Kosei Kitahara (@Surgo)
今日話すこと 前回のおさらい ‑ Twelve‑Factor App テクノロジー スタック With DynamoDB With
Kinesis Firehose With Redshift
前回のおさらい Twelve‑Factor App として作っている ロー カルで動作するサー ビスと同等のサー ビスがプロダクションで もそのまま動作する アプリケー
ション構成
アプリケー ション構成 主に以下の2 つの WebApp からなる Track: エンドユー ザー の環境、
行動情報を収集 (High latency) Report: 環境や行動情報の可視化 (Low latency) 主に以下の2 つの Worker キュー からなる Aggregate: Track の情報を Report で参照可能なデー タ形式へ 変換 (High Latency) Screenshot: スクリー ンショットの取得など (Low latency)
テクノロジー スタック ( 抜粋)
利用している AWS Native Service ( 抜粋) Application Load balancer ECS
(with Application Auto Scaling) Aurora (Auto Scaling for Replicas) ElastiCache DynamoDB (Auto Scaling) SQS (Auto scaling) Redshift with Kinesis Firehose (Auto scaling)
テクノロジー 選定基準 Auto Scaling!!1 Maintenance free (managed & auto upgrade)
Work locally Work with Django native (none customized) apps django‑rest‑framework django‑registration‑redux django‑storages etc...
Aurora/Redshift 最初からシャー ディングにより書き込みを分散 まだ Aurora Multi‑Master がプレビュー なので Redshift の同時クエリー
実行数制限 https://github.com/uncovertruth/django‑horizon/ Django のデー タベー スバックエンド Aurora: 標準の MySQL ( ちょっとカスタマイズ) Redshift: https://github.com/shimizukawa/django‑redshift‑ backend Redshift 用にクエリー をチュー ニング ( 主に DISTKEY) https://github.com/onysos/django‑composite‑foreignkey
ElastiCache しょうがないけど Auto Scaling がない Auto discovery 対応のバックエンドを利用 https://github.com/uncovertruth/django‑elastipymemcache Double
write & Double read Maintenance 時間をずらした2 クラスター で双方自動更新 カジュアルに再起動 ( しないけど) そのうち DAX に移行したい
DynamoDB Amazing! (Performance, cost, maintenace free) Object Mapper https://github.com/pynamodb/PynamoDB For
local dev & testing https://github.com/spulec/moto Factory‑boy なども _ b u i l d をカスタマイズしそのまま利用 そのうち DAX & Global region へ以降する
Kinesis Firehose django form や django‑rest‑framework serializer の validation ‑>
save 機構をカスタマイズするのみ local なら直接 sqlite へ、 本番なら firehose 経由で Redshift へ という用に切り分け https://github.com/spulec/moto を利用し、 想定する API へのリク エストと引数をテストしている 現在テスト稼働で 600Krecords/hour/shard を挿入
Lesson learned Auto scaling さまさま ( 常時監視対象が大幅に減る) APM が重要 Auto
scaling しないものは自前でなんとかする Django の枠をなるべくはみ出ない Aurora と DynamoDB は世界を救う
Future tasks boto の https リクエストのオー バー ヘッドが高い DynamoDB は
DAX を利用する SQS や DynamoDB のオー トスケー ルが追いつかない ( スパイク) スケジュー ルで頑張るのと母数を増やす ( みんな頑張って~)