Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Django with AWS native services.
Search
Kosei Kitahara
January 12, 2018
Technology
0
67
Django with AWS native services.
Django AWS native なサービスとして開発する
Kosei Kitahara
January 12, 2018
Tweet
Share
More Decks by Kosei Kitahara
See All by Kosei Kitahara
Twelve-Factor Python (Django) Application with Docker
surgo
0
480
Other Decks in Technology
See All in Technology
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
120
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
1.8k
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
5
5k
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
Webhook best practices for rock solid and resilient deployments
glaforge
1
280
Context Engineeringの取り組み
nutslove
0
320
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
320
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
620
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.2k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
140
Featured
See All Featured
Information Architects: The Missing Link in Design Systems
soysaucechin
0
770
Building AI with AI
inesmontani
PRO
1
690
How to train your dragon (web standard)
notwaldorf
97
6.5k
What's in a price? How to price your products and services
michaelherold
247
13k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Everyday Curiosity
cassininazir
0
130
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
Darren the Foodie - Storyboard
khoart
PRO
2
2.4k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
Transcript
Django with AWS native services Django を AWS native なサー
ビスとして開発する By Kosei Kitahara (@Surgo)
今日話すこと 前回のおさらい ‑ Twelve‑Factor App テクノロジー スタック With DynamoDB With
Kinesis Firehose With Redshift
前回のおさらい Twelve‑Factor App として作っている ロー カルで動作するサー ビスと同等のサー ビスがプロダクションで もそのまま動作する アプリケー
ション構成
アプリケー ション構成 主に以下の2 つの WebApp からなる Track: エンドユー ザー の環境、
行動情報を収集 (High latency) Report: 環境や行動情報の可視化 (Low latency) 主に以下の2 つの Worker キュー からなる Aggregate: Track の情報を Report で参照可能なデー タ形式へ 変換 (High Latency) Screenshot: スクリー ンショットの取得など (Low latency)
テクノロジー スタック ( 抜粋)
利用している AWS Native Service ( 抜粋) Application Load balancer ECS
(with Application Auto Scaling) Aurora (Auto Scaling for Replicas) ElastiCache DynamoDB (Auto Scaling) SQS (Auto scaling) Redshift with Kinesis Firehose (Auto scaling)
テクノロジー 選定基準 Auto Scaling!!1 Maintenance free (managed & auto upgrade)
Work locally Work with Django native (none customized) apps django‑rest‑framework django‑registration‑redux django‑storages etc...
Aurora/Redshift 最初からシャー ディングにより書き込みを分散 まだ Aurora Multi‑Master がプレビュー なので Redshift の同時クエリー
実行数制限 https://github.com/uncovertruth/django‑horizon/ Django のデー タベー スバックエンド Aurora: 標準の MySQL ( ちょっとカスタマイズ) Redshift: https://github.com/shimizukawa/django‑redshift‑ backend Redshift 用にクエリー をチュー ニング ( 主に DISTKEY) https://github.com/onysos/django‑composite‑foreignkey
ElastiCache しょうがないけど Auto Scaling がない Auto discovery 対応のバックエンドを利用 https://github.com/uncovertruth/django‑elastipymemcache Double
write & Double read Maintenance 時間をずらした2 クラスター で双方自動更新 カジュアルに再起動 ( しないけど) そのうち DAX に移行したい
DynamoDB Amazing! (Performance, cost, maintenace free) Object Mapper https://github.com/pynamodb/PynamoDB For
local dev & testing https://github.com/spulec/moto Factory‑boy なども _ b u i l d をカスタマイズしそのまま利用 そのうち DAX & Global region へ以降する
Kinesis Firehose django form や django‑rest‑framework serializer の validation ‑>
save 機構をカスタマイズするのみ local なら直接 sqlite へ、 本番なら firehose 経由で Redshift へ という用に切り分け https://github.com/spulec/moto を利用し、 想定する API へのリク エストと引数をテストしている 現在テスト稼働で 600Krecords/hour/shard を挿入
Lesson learned Auto scaling さまさま ( 常時監視対象が大幅に減る) APM が重要 Auto
scaling しないものは自前でなんとかする Django の枠をなるべくはみ出ない Aurora と DynamoDB は世界を救う
Future tasks boto の https リクエストのオー バー ヘッドが高い DynamoDB は
DAX を利用する SQS や DynamoDB のオー トスケー ルが追いつかない ( スパイク) スケジュー ルで頑張るのと母数を増やす ( みんな頑張って~)