Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介_201907_Is Word Segmentation Necessary for ...
Search
T.Tada
July 03, 2019
Technology
0
100
文献紹介_201907_Is Word Segmentation Necessary for Deep Learning of Chinese Representations
T.Tada
July 03, 2019
Tweet
Share
More Decks by T.Tada
See All by T.Tada
文献紹介_202002_Is artificial data useful for biomedical Natural Language Processing algorithms?
tad
0
63
文献紹介_202001_A Novel System for Extractive Clinical Note Summarization using EHR Data
tad
0
170
文献紹介_201912_Publicly Available Clinical BERT Embeddings
tad
0
170
文献紹介_201911_EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks
tad
0
220
文献紹介_201910_Do Neural NLP Models Know Numbers? Probing Numeracy in Embeddings
tad
0
100
文献紹介_201909_Sentence Mover’s Similarity_ Automatic Evaluation for Multi-Sentence Texts
tad
0
160
文献紹介_201908_Medical Word Embeddings for Spanish_ Development and Evaluation
tad
0
65
文献紹介_201906_Predicting Annotation Difficulty to Improve Task Routing and Model Performance for Biomedical Information Extraction
tad
0
97
文献紹介201905_Context-Aware Cross-Lingual Mapping
tad
0
97
Other Decks in Technology
See All in Technology
Cloud WAN MCP Serverから考える新しいネットワーク運用 / 20251228 Masaki Okuda
shift_evolve
PRO
0
150
AI Agent Agentic Workflow の可観測性 / Observability of AI Agent Agentic Workflow
yuzujoe
1
920
旬のブリと旬の技術で楽しむ AI エージェント設計開発レシピ
chack411
1
250
Master Dataグループ紹介資料
sansan33
PRO
1
4.2k
さくらのクラウドでのシークレット管理を考える/tamachi.sre#2
fujiwara3
1
120
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
330
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
AIと融ける人間の冒険
pujisi
0
120
AWS re:Invent 2025 を振り返る
kazzpapa3
2
110
戰略轉變:從建構 AI 代理人到發展可擴展的技能生態系統
appleboy
0
190
First-Principles-of-Scrum
hiranabe
4
2k
SwiftDataを覗き見る
akidon0000
0
110
Featured
See All Featured
Building Applications with DynamoDB
mza
96
6.9k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Typedesign – Prime Four
hannesfritz
42
2.9k
Done Done
chrislema
186
16k
The Curious Case for Waylosing
cassininazir
0
200
Abbi's Birthday
coloredviolet
0
4.3k
The SEO Collaboration Effect
kristinabergwall1
0
330
Testing 201, or: Great Expectations
jmmastey
46
7.9k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
130
A Soul's Torment
seathinner
4
2.1k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
1
350
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
190
Transcript
- 文献紹介 2019 Jul 3 - Is Word Segmentation Necessary
for Deep Learning of Chinese Representations? 長岡技術科学大学 自然言語処理研究室 多田太郎
About the paper 2 Authors: Conference: ACL 2019
Abstract ・中国語のテキストの単語分割の必要性はあまり調べられていない ・中国語単語分割(CWS)が深層学習に基づく中国語NLPに必要であるか ・4つのエンドツーエンドのNLPベンチマークタスクで実験 ・文字ベースのモデルは一貫して単語ベースのモデルよりも優れていた 3
Introduction 4 ・中国語テキストでは前処理として単語分割を行なうのが一般的 ・単語ベースのモデルにはいくつかの基本的な欠点がある コーパス内の単語のスパース性が過剰適合につながる OOV単語の偏在はモデルの学習能力を制限する →単語の頻度が低いため、モデルでそれらの意味を完全に学習することは不可能 ・最先端の単語セグメンテーションの性能でも完全には程遠い その誤差は下流のNLPタスクに影響 →中国語の単語の境界が非常に曖昧なため
・単語ベースのモデルを文字ベースのモデルと比較し、有用性を検討
Introduction 5
・ディープラーニングベースの中国語NLPにおける単語分割の効果を評価 言語モデリング、機械翻訳、テキスト分類、文のマッチング/言い換え ・単語ベースのモデルと文字ベースのモデルを比較 グリッドサーチでハイパーパラメータを調整 (学習率、バッチサイズ、ドロップアウト率などの重要な項目) Experimental Results 6
Chinese Tree-Bank 6.0(CT B6)で評価 ・次の単語を予測するタスク ・トレーニング80%、検証10%、テスト10% ・Jiebaで単語分割 Language Modeling 7
・Ch-En, En-Ch トレーニングセットは、LDCコーパスから抽出された1.25Mの文ペア 検証セット:NIST 2002 テストセット:NIST 2003,2004,2005,2006,2008 語彙サイズ:4,500 Machine Translation
8
・テ Machine Translation 9
・テ Machine Translation 10
Sentence Matching/Paraphrase 11 BQとLCQMCで評価 Stanford Natural Language Inference (SNLI) Corpusと似たタスク
ペアとなっている2つの文が同じ意味(BQ)、意図(LCQMC)か テキストはJiebaで単語分割 SOTAモデルのBiMPM(2017)を用い実験 BiMPMによって提案された標準設定 ランダムに初期化される200dのword / char埋め込みを使用
Sentence Matching/Paraphrase 12
Text Classification 13 5つのデータ・セットで実験 ChinaNews:ニュース記事、7カテゴリ Ifeng:ニュース記事の最初の段落、5カテゴリ JD_Full:製品レビュー、5クラス JD_binary:製品レビュー、2クラス Dianping:レストランのレビュー、2クラス 単語ベースと文字ベースで双方向LSTMモデルをトレーニング
Text Classification 14 ・ト
Domain Adaptation Ability 15 ・学習データと異なる(しかし関連した)データに対しての評価 単語のスパース性により文字ベースのモデルは単語ベースのモデルよりも ドメイン適応能力が高いと仮定 ・感情分析データセットに対して仮説を検証 Dianping(レストランレビュー)とJD_binary(製品レビュー)で評価 トレーニング/テストを入れ替えて2通り行なう
Domain Adaptation Ability 16
Analysis 17 ・単語ベースのモデルが文字ベースのモデルよりも優れている結果を得た →理由の理解を目指す ・以下項目で確認 Data Sparsit Out-of-Vocabulary Words Visualization
Data Sparsity 18 ・語彙サイズが大きくなりすぎないよう頻度しきい値を設定 →頻度がしきい値を下回るすべての単語をUNKトークンに
Out-of-Vocabulary Words 19 ・単語ベースのモデルの劣っている理由にOOVが考えられる →OOVの数を減らすことで、単語ベースと文字ベースのギャップを小さくできるのでは ・頻度しきい値を低く設定すると、データのスパース性の問題の悪化が予想される →異なる単語頻度のしきい値に対して、データ・セットから単語OOVを含む文を削除
Out-of-Vocabulary Words 20
Visualization 21 BQ意味マッチングタスクで評価(2つの文に同じ意図があるかどうか) 2つの文のトークン間のアテンションマッチング値を確認
Conclusion 22 ・中国語深層学習での単語分割の必要性について調査 ・4つのNLPタスクで、単語ベースと文字ベースのモデルを評価 ・文字ベースのモデルは一貫して単語ベースのモデルよりも優れていた ・単語ベースモデルの劣っている理由は単語分布のまばらさが原因であることを示した
23
Overfitting 24