Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介_202002_Is artificial data useful for biome...
Search
T.Tada
February 10, 2020
Technology
0
63
文献紹介_202002_Is artificial data useful for biomedical Natural Language Processing algorithms?
T.Tada
February 10, 2020
Tweet
Share
More Decks by T.Tada
See All by T.Tada
文献紹介_202001_A Novel System for Extractive Clinical Note Summarization using EHR Data
tad
0
170
文献紹介_201912_Publicly Available Clinical BERT Embeddings
tad
0
170
文献紹介_201911_EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks
tad
0
220
文献紹介_201910_Do Neural NLP Models Know Numbers? Probing Numeracy in Embeddings
tad
0
100
文献紹介_201909_Sentence Mover’s Similarity_ Automatic Evaluation for Multi-Sentence Texts
tad
0
160
文献紹介_201908_Medical Word Embeddings for Spanish_ Development and Evaluation
tad
0
65
文献紹介_201907_Is Word Segmentation Necessary for Deep Learning of Chinese Representations
tad
0
100
文献紹介_201906_Predicting Annotation Difficulty to Improve Task Routing and Model Performance for Biomedical Information Extraction
tad
0
97
文献紹介201905_Context-Aware Cross-Lingual Mapping
tad
0
97
Other Decks in Technology
See All in Technology
Databricks Free Edition講座 データエンジニアリング編
taka_aki
0
2.5k
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
1
130
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
Digitization部 紹介資料
sansan33
PRO
1
6.5k
形式手法特論:コンパイラの「正しさ」は証明できるか? #burikaigi / BuriKaigi 2026
ytaka23
16
5.1k
困ったCSVファイルの話
mottyzzz
0
180
ファインディにおけるフロントエンド技術選定の歴史
puku0x
2
1.4k
Eight Engineering Unit 紹介資料
sansan33
PRO
0
6.2k
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
330
あの夜、私たちは「人間」に戻った。 ── 災害ユートピア、贈与、そしてアジャイルの再構築 / 20260108 Hiromitsu Akiba
shift_evolve
PRO
0
590
旬のブリと旬の技術で楽しむ AI エージェント設計開発レシピ
chack411
1
230
複雑さを受け入れるか、拒むか? - 事業成長とともに育ったモノリスを前に私が考えたこと #RSGT2026
murabayashi
1
1.8k
Featured
See All Featured
Ethics towards AI in product and experience design
skipperchong
1
170
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
The Curious Case for Waylosing
cassininazir
0
200
Mobile First: as difficult as doing things right
swwweet
225
10k
Music & Morning Musume
bryan
46
7k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
48k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
890
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
120
Six Lessons from altMBA
skipperchong
29
4.1k
The SEO identity crisis: Don't let AI make you average
varn
0
47
Faster Mobile Websites
deanohume
310
31k
Transcript
- 文献紹介 2020 Feb. 10 - Is artificial data useful
for biomedical Natural Language Processing algorithms? 長岡技術科学大学 自然言語処理研究室 多田太郎
About the paper 2 Authors: Conference:
・Biomedical領域NLPの開発の主要な障害は、データへのアクセシビリティ ・臨床テキストの疑似データ生成方法を提案 ・生成したデータを使用し、テキスト分類と時間踏まえた関係抽出タスクで実験 ・疑似データによるNN手法の精度向上の可能性を示す ・擬似データのみをトレーニングデータに用いて有用性を確認 3 Abstract
・データ不足は、biomedical領域でのより強力な手法を用いるのに障害 ・疑似データによるデータセットの拡張は、biomedical領域のNLPでも注目される ▷通常の擬似データによる拡張は、20トークン以下の文での取り組みが多い ▷医療テキストを対象とする試みはほとんどない ・キーフレーズを使用して、疑似データを生成 ・生成されたデータのみをトレーニングデータに用い、擬似データの有用性を調査 4 Introduction
・擬似データの生成 1. 段落毎にでキーフレーズ抽出 2. 文レベルで、生成モデルへの入力 Transformerモデルを使用 3. 擬似データ生成 ・擬似データの評価 ▷内部評価
ROUGE-L, BLEU ▷外部評価 2タスクで実験(後述) 5 Methodology
外部評価1:3つの方法で実験(classification task,temporal relation extraction task) 1.オリジナルデータのみ 2.オリジナルと生成したデータ 3.オリジナルのデータをアップサンプリング 良くない生成データを想定 外部評価2:
生成データのみで実験 (classification task) 6 Methodology
・MIMIC-IIIデータベースからのEHRを使用 ・ICUでの成人患者約5万人の匿名化された臨床データ テキスト生成のデータセット 退院サマリを使用 開発データ:126人の記録をランダムに選定 5ワード未満の長さの文は削除 7 Experimental Setup -Data-
表現型データセット 1,561人の患者の1,600件の退院サマリー(約180K文) 患者が病状を患っているか、発症するリスクがあるかを判断するタスク データセットには、13の表現型(例、進行がん、進行心臓病、進行肺疾患など) テスト:20% (test-pheno)、開発10% (dev-pheno)、 70%をトレーニングと疑似データ生成のテストに使用 (test-gen-pheno) 8
Experimental Setup -Data-
時間関係データセット 2012 i2b2 temporal relations shared task (Sun et al., 2013b)
190文書の退院サマリ 開発:10%(dev-temp)、 残りは疑似データのテストとトレーニングに使用(test-gen-temp) テスト:元々のデータのテスト 時間表現に関する病歴のイベントの相対的な順序を決定するタスク イベント(EVENT)、時間表現(TIMEEX3)、それらの時間的関係(TLINK)が注釈 この研究ではイベントが同時に起きているか(注釈された関係性の33%)を予測 頻度1の単語はプレースホルダーに 9 Experimental Setup -Data-
10 Experimental Setup -Text Generation Models- ・Transformerモデルを使用し、文生成 OpenNMTツールキット(Klein et al.,2017)
・抽出されたキーフレーズを用いて生成(キーフレーズはtrain-genから抽出) Rakeアルゴリズム(Rose et al., 2010)を使用 段落ごとに高いスコアから50%取得 ・各文から抽出されたキーフレーズを入力に 一文当たり平均2.4キーフレーズ、平均の長さ1.7語
11 Experimental Setup -Text Generation Models-
12 表現型分類タスク(binary classification task) 以下モデルで実験 ・CNN ・Naive Bayes classifier (ワードレベルのBoW)
Experimental Setup -Models for Phenotype Classification-
時間関係抽出 ・BiLSTM classifier pre-trained GloVe word embeddings ・Naive Bayes classifier
(ワードレベルのBoW) イベントとイベントごとにoverlapしているか否かの2値分類 13 Experimental Setup -Models for Temporal Relations Extraction-
14 Experimental Results -Intrinsic Evaluation- 人手でも確認 ほとんどの文では、主な意味は保持し、詳細な部分に変更が加わった 理解できない文はまれであった
15 Experimental Setup -Text Generation Models-
16 Experimental Results -Extrinsic Evaluation- Phenotype Classification
17 特にCNNモデルで精度の向上を確認 Experimental Results -Extrinsic Evaluation- Phenotype Classification
・i2b2 dataset での実験結果 18 Experimental Results -Extrinsic Evaluation- Phenotype Classification
・人手の分析から、生成されたテキストではほとんどの意味が保持 ・疑似データのみを使用した結果は、実際のデータのみを使用した結果と同等 ・本研究は、より長い臨床テキストを生成する問題を検討する最初の研究 ・疑似データを他の下流のタスクに使用する場合、生成されたテキストの臨床的 妥当性を評価するには、さらなる分析が必要 ▷特に臨床研究環境での二次利用をサポートすることを目的としたもの ・テキスト生成モデルを設計するための他のアプローチが必要 19 Discussion
・臨床テキストの疑似データ生成方法を提案 ・生成したデータを使用し、テキスト分類と時間関係抽出タスクで実験 ・疑似データによるNN手法の精度向上の可能性を示す ・擬似データのみをトレーニングデータに用いて有用性を確認 ・データのアクセシビリティの問題を解決するアプローチとなる可能性 20 Conclusion
・Rakeアルゴリズムの元論文 Automatic Keyword Extraction from Individual Documentshttps://www.researchgate.net/publication/227988510_Automatic_ Keyword_Extraction_from_Individual_Documents 21 参考
・gen-key の説明 22 Experimental Results -Extrinsic Evaluation- Phenotype Classification
・NBモデルでの重要単語 23 Experimental Results -Extrinsic Evaluation- Phenotype Classification