Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介_201911_EDA: Easy Data Augmentation Techniq...
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
T.Tada
November 28, 2019
Technology
0
220
文献紹介_201911_EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks
T.Tada
November 28, 2019
Tweet
Share
More Decks by T.Tada
See All by T.Tada
文献紹介_202002_Is artificial data useful for biomedical Natural Language Processing algorithms?
tad
0
64
文献紹介_202001_A Novel System for Extractive Clinical Note Summarization using EHR Data
tad
0
170
文献紹介_201912_Publicly Available Clinical BERT Embeddings
tad
0
170
文献紹介_201910_Do Neural NLP Models Know Numbers? Probing Numeracy in Embeddings
tad
0
100
文献紹介_201909_Sentence Mover’s Similarity_ Automatic Evaluation for Multi-Sentence Texts
tad
0
160
文献紹介_201908_Medical Word Embeddings for Spanish_ Development and Evaluation
tad
0
68
文献紹介_201907_Is Word Segmentation Necessary for Deep Learning of Chinese Representations
tad
0
110
文献紹介_201906_Predicting Annotation Difficulty to Improve Task Routing and Model Performance for Biomedical Information Extraction
tad
0
97
文献紹介201905_Context-Aware Cross-Lingual Mapping
tad
0
100
Other Decks in Technology
See All in Technology
ランサムウェア対策としてのpnpm導入のススメ
ishikawa_satoru
0
220
私たち準委任PdEは2つのプロダクトに挑戦する ~ソフトウェア、開発支援という”二重”のプロダクトエンジニアリングの実践~ / 20260212 Naoki Takahashi
shift_evolve
PRO
2
200
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
220
今こそ学びたいKubernetesネットワーク ~CNIが繋ぐNWとプラットフォームの「フラッと」な対話
logica0419
5
430
Cloud Runでコロプラが挑む 生成AI×ゲーム『神魔狩りのツクヨミ』の裏側
colopl
0
140
コンテナセキュリティの最新事情 ~ 2026年版 ~
kyohmizu
6
1.7k
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.6k
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
660
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
310
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
100
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
Visualization
eitanlees
150
17k
Mind Mapping
helmedeiros
PRO
0
90
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Prompt Engineering for Job Search
mfonobong
0
160
Building Applications with DynamoDB
mza
96
6.9k
Building the Perfect Custom Keyboard
takai
2
690
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Transcript
- 文献紹介 2019 Nov. 28 - EDA: Easy Data Augmentation
Techniques for Boosting Performance on Text Classification Tasks 長岡技術科学大学 自然言語処理研究室 多田太郎
About the paper 2 Authors: Conference:
Abstract ・EDA: Easy Data Augmentation を提案 ・文に4種類の編集を行ないデータを拡張 ・ローリソース(データセットが小規模)なタスクに対して強力 ・トレーニングセット100%使用時の精度を50%のデータ+EDAで達成 3
Introduction ・テキスト分類の精度は、トレーニングデータのサイズと質に依存している ・データの拡張により、より堅牢なモデルを得られる ・折り返し翻訳、ノイズを加える、言語モデルを使った同義語置換などがある →有効だがコストが高い ・シンプルかつ言語を問わないデータ拡張を提案 4
EDA 5 トレーニングデータの特定の文に以下4つのいずれかの操作をランダムに実施 ・Synonym Replacement (SR): 文からn単語(ストップワードでない)をランダムで選択 各単語をランダムに選ばれた同義語と置き換え ・Random Insertion
(RI): 文中のランダムな単語(ストップワードでない)のランダムな同義語を取得 文のランダムな位置に挿入 この作業をn回行なう これは先行研究でやってる
EDA 6 トレーニングデータの特定の文に以下4つのいずれかの操作をランダムに実施 ・Random Swap (RS): 文からランダムに2単語を選択し入れ替え この作業をn回行なう ・Random Deletion
(RD): 確率pで文の各単語を削除(pの値は後述)
EDA 7 長い文は多くのノイズを含む可能性がある バランスをとるため変更する単語数nを定める α:文内の変更する単語の割合を示すパラメータ(RDのp=a) l :文の長さ n = αl
EDA 8
Experimental Setup 9 5つのテキスト分類のベンチマークタスクで実験 EDAは小規模なデータセットでより役立つと想定される →トレーニングデータの量を変更し実験(LSTMとCNNを使用)
Results -EDA Makes Gains- 10 トレーニングデータを変更し実験 ・full set →平均0.8ポイント向上 ・500
→平均3.0ポイント向上
Results -Training Set Sizing- 11
Results -Training Set Sizing- 12 小規模なトレーニングデータで大幅に精度向上
Results -Training Set Sizing- 13 50%のトレーニングデータ + EDAの精度で、 トレーニングデータを全て使用した場合の精度を達成
Results -Does EDA conserve true labels?- 14 操作をして拡張した文の分類クラスは変わらない? ・データの拡張をしない状態のPCタスク(2値)でLSTMをトレーニング ・EDAでテストデータの各文に対し、9つ拡張文を生成し実験
Results -Does EDA conserve true labels?- 15 ほとんど場合で拡張された文が元のラベルと同じ
Results -Ablation Study: EDA Decomposed- 16 それぞれの文操作の効果を確認
Results -Ablation Study: EDA Decomposed- 17 それぞれの文操作の効果を確認 どの操作も小規模なデータセットで効果大、α = 0.1
がいい感じ
Results -How much augmentation?- 18 どのくらい文を増やすべきか
Results -How much augmentation?- 19 どのくらい文を増やすべきか このくらいが良いらしい
Comparison with Related Work 20 EDAは言語モデルも外部データも必要としない
Discussion and Limitations 21 EDAの限界 ・データの量が十分な場合に精度の向上はわずか ・pre-train モデルを使用する場合、大幅な貢献はもたらさない しかし、NNモデルを大きく複雑にしていく高コストな手法は避けたい
Conclusions 22 ・シンプルかつ低コストなデータ拡張手法を提案 ・5つの分類タスクで精度向上 ・小規模なトレーニングセットでは精度の貢献も大きく、過学習を避けられる