Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介_201912_Publicly Available Clinical BERT Em...
Search
T.Tada
December 16, 2019
Technology
0
170
文献紹介_201912_Publicly Available Clinical BERT Embeddings
T.Tada
December 16, 2019
Tweet
Share
More Decks by T.Tada
See All by T.Tada
文献紹介_202002_Is artificial data useful for biomedical Natural Language Processing algorithms?
tad
0
63
文献紹介_202001_A Novel System for Extractive Clinical Note Summarization using EHR Data
tad
0
170
文献紹介_201911_EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks
tad
0
220
文献紹介_201910_Do Neural NLP Models Know Numbers? Probing Numeracy in Embeddings
tad
0
100
文献紹介_201909_Sentence Mover’s Similarity_ Automatic Evaluation for Multi-Sentence Texts
tad
0
160
文献紹介_201908_Medical Word Embeddings for Spanish_ Development and Evaluation
tad
0
65
文献紹介_201907_Is Word Segmentation Necessary for Deep Learning of Chinese Representations
tad
0
100
文献紹介_201906_Predicting Annotation Difficulty to Improve Task Routing and Model Performance for Biomedical Information Extraction
tad
0
97
文献紹介201905_Context-Aware Cross-Lingual Mapping
tad
0
97
Other Decks in Technology
See All in Technology
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
0
460
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
140
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
140
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
9
4.3k
障害対応訓練、その前に
coconala_engineer
0
200
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
470
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.9k
[Neurogica] 採用ポジション/ Recruitment Position
neurogica
1
130
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
1
420
Knowledge Work の AI Backend
kworkdev
PRO
0
280
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
200
日本Rubyの会: これまでとこれから
snoozer05
PRO
6
250
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.5k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Context Engineering - Making Every Token Count
addyosmani
9
560
エンジニアに許された特別な時間の終わり
watany
106
220k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
350
AI: The stuff that nobody shows you
jnunemaker
PRO
1
28
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
91
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
110
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
280
Embracing the Ebb and Flow
colly
88
4.9k
Writing Fast Ruby
sferik
630
62k
Transcript
- 文献紹介 2019 Dec. 16 - Publicly Available Clinical BERT
Embeddings 長岡技術科学大学 自然言語処理研究室 多田太郎
About the paper 2 Authors: Conference:
・文脈を考慮した単語埋め込みモデル(ELMoやBERTなど)は、特定分野では 限定的にしか検討されていない ・臨床テキスト用のBERTモデルを調査および公開 一般的な臨床テキスト向けと退院サマリー向け ・提案モデルは、3つの臨床分野NLPタスクで精度高 3 Abstract
・ELMoやBERTなどの文脈を考慮した埋め込み表現はNLPで成功 ・臨床テキストは、一般テキストや非臨床的な生物医学テキストと異なる 臨床分野のBERTモデルの必要性 ・しかし、計算コストが膨大 学習済みモデルを構築し、公開 4 Introduction
BioBERT (Lee et al., 2019) 5 Introduction
・Data: MIMIC-III v1.4データベースの約200万件の臨床テキスト ・Train: 2種 ・全てのノートタイプのテキストを使用 ・ダウンストリームタスクを考慮、退院サマリーのみを使用 ・Model: 2種 1)Clinical BERT: BERTBaseを初期化し学習 2)Clinical BioBERT: BioBERTから初期化し学習
・計算コスト: GeForce GTX TITAN X 12 GB で約18日 6 Method
・5つのタスクで評価 MedNLI: 自然言語推論タスク 4つのi2b2のNERタスク 2006: 1B 匿名化タスク 2010: 概念抽出タスク 2012: エンティティ抽出チャレンジ 2014: 7A 匿名化チャレンジ ・最近傍の単語を確認 7 Tasks
8 Tasks
9 Results & Discussions
10 Results & Discussions 3つのタスクで精度向上
11 Results & Discussions 匿名化タスクでは改善なし
BioBERTおよびClinical BERTの3つのカテゴリからの3つの最近傍単語 12 Results & Discussions
BioBERTおよびClinical BERTの3つのカテゴリからの3つの最近傍単語 13 Results & Discussions BioBERT: 臨床テキストに関連するのは1つのみ Clinical BERT:
3つ全ての単語が臨床の文脈
・埋め込みの上にこれ以上の高度なモデルアーキテクチャを試していない 精度向上の余地がある ・MIMICには単一医療機関(BIDMC)の集中治療室のメモのみが含まれる 施設間で診療慣行の違いがある 複数の施設のメモを使用することで精度向上の可能性 ・調査したいずれの匿名化タスクも改善されていない 匿名化タスク用に適したコーパスを使用することで解決する可能性 14 Limitations &
Future Work
・臨床テキストでBERTモデルを学習し調査 ・Clinical BERTは匿名化以外の3つのタスクで精度向上 ・臨床分野テキストでの学習済BERTモデルを公開 臨床分野では他にない 訓練に必要な膨大な計算コストを回避可能 15 Conclusion
Appendix 16