Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介_202001_A Novel System for Extractive Clini...
Search
T.Tada
January 20, 2020
Technology
0
170
文献紹介_202001_A Novel System for Extractive Clinical Note Summarization using EHR Data
T.Tada
January 20, 2020
Tweet
Share
More Decks by T.Tada
See All by T.Tada
文献紹介_202002_Is artificial data useful for biomedical Natural Language Processing algorithms?
tad
0
63
文献紹介_201912_Publicly Available Clinical BERT Embeddings
tad
0
170
文献紹介_201911_EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks
tad
0
220
文献紹介_201910_Do Neural NLP Models Know Numbers? Probing Numeracy in Embeddings
tad
0
100
文献紹介_201909_Sentence Mover’s Similarity_ Automatic Evaluation for Multi-Sentence Texts
tad
0
150
文献紹介_201908_Medical Word Embeddings for Spanish_ Development and Evaluation
tad
0
65
文献紹介_201907_Is Word Segmentation Necessary for Deep Learning of Chinese Representations
tad
0
100
文献紹介_201906_Predicting Annotation Difficulty to Improve Task Routing and Model Performance for Biomedical Information Extraction
tad
0
97
文献紹介201905_Context-Aware Cross-Lingual Mapping
tad
0
97
Other Decks in Technology
See All in Technology
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
710
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
710
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
460
Overture Maps Foundationの3年を振り返る
moritoru
0
180
因果AIへの招待
sshimizu2006
0
960
エンジニアリングをやめたくないので問い続ける
estie
2
1.2k
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
180
re:Invent2025 コンテナ系アップデート振り返り(+CloudWatchログのアップデート紹介)
masukawa
0
360
Reinforcement Fine-tuning 基礎〜実践まで
ch6noota
0
170
Ruby で作る大規模イベントネットワーク構築・運用支援システム TTDB
taketo1113
1
270
eBPFとwaruiBPF
sat
PRO
4
2.6k
世界最速級 memcached 互換サーバー作った
yasukata
0
340
Featured
See All Featured
Embracing the Ebb and Flow
colly
88
4.9k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Code Review Best Practice
trishagee
74
19k
What's in a price? How to price your products and services
michaelherold
246
13k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Building an army of robots
kneath
306
46k
Transcript
- 文献紹介 2020 Jan. 20 - A Novel System for
Extractive Clinical Note Summarization using EHR Data 長岡技術科学大学 自然言語処理研究室 多田太郎
About the paper 2 Authors: Conference: Proceedings of the
2nd Clinical NLP 2019
・電子健康記録(EHR)内の患者のケアと管理に関する情報は埋もれている ▷医師が通常のワークフロー中にレビューすることは難しい ・臨床記録に関する疾患固有の抽出型要約タスクに取り組む ▷主に医師や看護師による記録に焦点を当てる ・EHR固有の特徴量を追加することでシステム全体のパフォーマンスが向上 3 Abstract
・EHRは、患者の健康情報の長期的な記録 ・構造化された(バイタルなど)情報 ・構造化されていない(退院サマリなど)情報 で構成される ・EHRへの移行により、意図せず記録が増大 ▷テンプレートやコピーペーストなどにより、不必要または冗長なデータが ・EHR内の重要な情報はユーザー(医師など)によって異なる 4 Introduction
・最終的な目標は医師が作成した要約に近い要約の出力 ・患者の高血圧または糖尿病に関する重要な情報に焦点を当て要約 ▷抽出型要約に取り組む ・言語資源が少ない 5 Introduction
・高血圧および/または糖尿病の既知の診断を含むアメリカの大規模なEHRで構成 ▷患者EHR内で医師または看護師が作成した記録を使用 ▷選択した記録の約半分を手動で内容確認 ・得られたコーパス: ▷3,453人の外来患者の臨床記録、1つの記録あたり平均138文 ▷12人の内科医または家庭医によって重要な箇所に注釈付け ▷各文書2人が注釈、3人目の医師がチェック ▷文書毎にだいたい4〜5文が選定 ・注釈する情報は、疾患に焦点を合わせた要約として提示されるものを想定 6
Data
アノテータの一致度(文レベル) 選定されない文が多いため、Precision, Recall, F-scoreで確認 7 Data
8 Data
・SVM、Linear-chain CRF、CNNで実験 ・臨床記録では、文は短いことも多く、意味は文脈に依存 ・トレーニングデータの各文書中に要約として注釈が付けられているのは3% (平均138の文) 9 Method
10 Method
11 Method Concept Recognitionは Bodenreider (2004)を 使用 ADEには既存 (MADE1.02など)の ラベル付きデータセットを
使用
12 Section: Note Section 文が14に定義した区分のどれにあたるか (過去の病歴,検査結果,アレルギーなど) Context:DiseaseContext 文脈(テキスト内で現れる疾患など)の情報 Plan: 治療計画
Method
1.Reasons for Annotator Differences 2.Addressing Issues of Data Scarcity 3.Limitations
in Evaluation 13 Discussion
1.Reasons for Annotator Differences ・参照要約には主観的な要素が残る ・医師2人の注釈でも、何を要約に必要な情報とするかが別れる ・これは、タスクの固有の性質であり、システムで使用する一貫した参照文が必要 ▷3人目の医師の重要性を示している 14 Discussion
2.Addressing Issues of Data Scarcity ・薬物に関する事象(ADE)には既存(MADE1.02など)のラベル付きデータセットを使用 ・既存のデータ・セットも活用することが重要 15 Discussion
3.Limitations in Evaluation ・今回は臨床要約に含めるべきかどうかの微妙な違いを完全には把握していない ・例:薬物に関連する事象(ADE) ▷患者の安全性に大きな影響を与える、重要な情報 ▷患者のケアを管理する際に必要となる、まれなイベント ▷文の重要性は文書の外の知識に依存 ▷他のドメインからの一般的な要約アルゴリズムがすぐに機能しない理由のひとつ 16
Discussion
・臨床記録からの抽出型要約のための自動化システムを提案 ・臨床記録を対象としたパイプラインについて説明 ・豊富なラベル付きデータセットが利用可能になるまでは有用 17 Conclusion