Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンティスト養成読本ビジネス活用編のこぼれ話とエンジニアとデータサイエンティストのコ...
Search
tetsuroito
June 12, 2019
Education
3
3.3k
データサイエンティスト養成読本ビジネス活用編のこぼれ話とエンジニアとデータサイエンティストのコラボについて
2019/06/12 みんなのPython勉強会#46 の発表スライドです
tetsuroito
June 12, 2019
Tweet
Share
More Decks by tetsuroito
See All by tetsuroito
Data Engineering Study#30 LT資料
tetsuroito
2
1.5k
データエンジニアリングの潮流を俯瞰する
tetsuroito
1
1.9k
Classiが取り組んできた 機械学習の試行錯誤
tetsuroito
0
860
事業会社でのデータマネジメントのプラクティス #TechMar
tetsuroito
1
660
Data Engineering Study #9 Classiのデータ組織の歩み
tetsuroito
5
5.9k
Data Engineering Study #3 基調講演_データ分析基盤の浸透に必要なこと
tetsuroito
4
5k
Subscription Meetup Vol.2 Opening Talk Slide
tetsuroito
0
140
Data_Pipeline_Casual_Talk_Vol.4_for_Ready.pdf
tetsuroito
0
1.6k
Data Pipeline Casual Talk Vol.3 for Ready #DPCT
tetsuroito
0
2k
Other Decks in Education
See All in Education
Introduction - Lecture 1 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
2.6k
Node-REDで広がるプログラミング教育の可能性
ueponx
0
160
Master of Applied Science & Engineering: Computer Science & Master of Science in Applied Informatics: Artificial Intelligence and Data Science
signer
PRO
0
840
KBS新事業創造体験2025_科目説明会
yasuchikawakayama
0
130
ÉTICA, INCLUSIÓN, EDUCACIÓN INTEGRAL Y NEURODERECHOS EN EL CONTEXTO DEL NEUROMANAGEMENT
jvpcubias
0
120
Web Application Frameworks - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
データで見る赤ちゃんの成長
syuchimu
0
330
自分だけの、誰も想像できないキャリアの育て方 〜偶然から始めるキャリアプラン〜 / Career planning starting by luckly v2
vtryo
1
250
今までのやり方でやってみよう!?~今までのやり方でやってみよう!?~
kanamitsu
0
200
仏教の源流からの奈良県中南和_奈良まほろば館‗飛鳥・藤原DAO/asuka-fujiwara_Saraswati
tkimura12
0
150
理想の英語力に一直線!最高効率な英語学習のすゝめ
logica0419
6
440
Портфолио - Шынар Ауелбекова
shynar
0
120
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
Typedesign – Prime Four
hannesfritz
42
2.8k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Producing Creativity
orderedlist
PRO
348
40k
The World Runs on Bad Software
bkeepers
PRO
72
11k
Practical Orchestrator
shlominoach
190
11k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
Fireside Chat
paigeccino
41
3.7k
Scaling GitHub
holman
463
140k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
The Invisible Side of Design
smashingmag
302
51k
Transcript
データサイエンティスト養成読本 ビジネス活用編のこぼれ話と エンジニアとデータサイエンティストのコラボ について 2019/06/12 みんなのPython勉強会#46
誰? • 名前 : 伊藤 徹郎 (@tetsuroito) • 所属 :
Classi株式会社 データAI部 • 属性:データサイエンティスト • マイブーム:スパイスカレー • コミュニティ ◦ Data Analyst Meetup Tokyo ◦ Machine Learning Casual Talk ◦ Data Pipeline Casual Talk など
会社の宣伝
会社の宣伝
先週の話 ワタクシ
今日の話 • 去年出版した書籍(技術評論社) • DS養成読本シリーズ5作目 • 10人の著者によるオムニバス形式 • 主な内容 ◦
分析PJあるある ◦ ちょっとしたTips (Pythonどころかコードは1行も出てきません) 私が著者代表の一人です
何が書いてあるの?
何が書いてあるの? 分析プロジェクトの 機能要件ではなく、 非機能要件でつまづきや すいポイントのポエム
養成読本関連は色々記事あるので、そっち見て
閑話 休題
• 相手の言動の真意を理解する • 自分の言動を相手がどう捉えているかを理 解する • 育った環境や価値観が異なる人と働くとき に、行き違いや誤解を生むことなく、確かな 信頼を築く技術 異文化理解力の重要性
最近のチームでも異なる文化の職種が多い マネジメント マーケティング エンジニアリング 製造・開発 サポート 販売 デザイン データサイエンス
データサイエンスとエンジニアリングの違い PoCやプロトをプロダクションに乗せたい 引用: https://towardsdatascience.com/research-oriented-code-in-ai-ml-projects-f0dde4f9e1ac
データサイエンスとエンジニアリングの違い PoCやプロトをプロダクションに乗せたい 引用: https://towardsdatascience.com/research-oriented-code-in-ai-ml-projects-f0dde4f9e1ac コードのリファクタリングまった なし!
• 環境が同期してなくて動かない • Pythonっぽくないコードの書き方 • 何を計算しているかよくわからない • それ必要?.pyの存在 • Pandasが使われていてメモリが...
• 運用って言葉知ってますか? • テストコード is どこ etc ... データサイエンス系のコードのリファクタがむずい *フィクションです
リファクタリングの理解が噛み合わない例 エンジニア データサイエンティスト 可読性・効率・高速化 などのためにリファクタ Jupyterの途中結果消して 綺麗にすればいいんでしょ?
• 相手の言動の真意を理解する • 自分の言動を相手がどう捉えているかを理 解する • 育った環境や価値観が異なる人と働くとき に、行き違いや誤解を生むことなく、確かな 信頼を築く技術 (再掲)異文化理解力の重要性
• 相手の言動の真意を理解する • 自分の言動を相手がどう捉えているかを理 解する • 育った環境や価値観が異なる人と働くとき に、行き違いや誤解を生むことなく、確かな 信頼を築く技術 (再掲)異文化理解力の重要性
お互いに背景を理解する 努力をしましょう!
コミュニケーションをきちんととる • SlackなどでHRTにもとづき、普段から会話する • 心理的安全にもとづいた雑談ちょー大事 • 顔を合わせて会話する機会を作る • 炎上しない優しいPull Request
• コードを憎んで人を憎まず • 実装意図とか、その人の書き方の好みとかを知る
Google Colabでペアプロしてみる
機械学習や理論の勉強会をしてみる
達成したい目的 解決したい課題 同期 実装
• 近年の現場では多様な背景のメンバーが多い • データサイエンスPJの場合も例外じゃない • それぞれのコンテキストを読み取ろう • 粒度を変えてもそれは起きうる • 目的を念頭に適切なHowを選択しよう
まとめ
最後に PyCon US 共有会やるので、来てね!
ご静聴 ありがとう ございました