Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンティスト養成読本ビジネス活用編のこぼれ話とエンジニアとデータサイエンティストのコ...
Search
tetsuroito
June 12, 2019
Education
3
3.2k
データサイエンティスト養成読本ビジネス活用編のこぼれ話とエンジニアとデータサイエンティストのコラボについて
2019/06/12 みんなのPython勉強会#46 の発表スライドです
tetsuroito
June 12, 2019
Tweet
Share
More Decks by tetsuroito
See All by tetsuroito
データエンジニアリングの潮流を俯瞰する
tetsuroito
1
1.7k
Classiが取り組んできた 機械学習の試行錯誤
tetsuroito
0
740
事業会社でのデータマネジメントのプラクティス #TechMar
tetsuroito
1
560
Data Engineering Study #9 Classiのデータ組織の歩み
tetsuroito
5
5.4k
Data Engineering Study #3 基調講演_データ分析基盤の浸透に必要なこと
tetsuroito
4
4.5k
Subscription Meetup Vol.2 Opening Talk Slide
tetsuroito
0
110
Data_Pipeline_Casual_Talk_Vol.4_for_Ready.pdf
tetsuroito
0
1.3k
Data Pipeline Casual Talk Vol.3 for Ready #DPCT
tetsuroito
0
1.8k
サブスクリプションミートアップOPトークスライド
tetsuroito
0
4.6k
Other Decks in Education
See All in Education
AWS All Certが伝える 新AWS認定試験取得のコツ (Machine Learning Engineer - Associate)
nnydtmg
1
450
セキュリティ・キャンプ全国大会2024 S17 探査機自作ゼミ 事前学習・当日資料
sksat
3
760
Skynet to Schoolnet
draycottmc
0
150
横浜国立大学大学院 国際社会科学府 経営学専攻博士課程前期(社会人専修コース)_在校生体験談
miki_small_pin
0
610
2024年度春学期 統計学 第13回 不確かな測定の不確かさを測る ― 不偏分散とt分布 (2024. 7. 4)
akiraasano
PRO
0
150
The Blockchain Game
jscottmo
0
3.6k
本の虫になろう
kenjiro56
0
120
Zoom-ohjeet
matleenalaakso
7
7.1k
"数学" をプログラミングしてもらう際に気をつけていること / Key Considerations When Programming "Mathematics"
guvalif
0
510
week13@tcue2024
nonxxxizm
0
540
プロダクト・エンジニア・QAE 3軸でのナレッジシェアのススメ
hinac0
1
770
2024年度春学期 統計学 第12回 分布の平均を推測する ー 区間推定 (2024. 6. 27)
akiraasano
PRO
1
160
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.8k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
26
2k
Unsuck your backbone
ammeep
668
57k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Optimising Largest Contentful Paint
csswizardry
31
2.8k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
37
1.7k
Git: the NoSQL Database
bkeepers
PRO
425
64k
How STYLIGHT went responsive
nonsquared
95
5.1k
Build The Right Thing And Hit Your Dates
maggiecrowley
32
2.3k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Transcript
データサイエンティスト養成読本 ビジネス活用編のこぼれ話と エンジニアとデータサイエンティストのコラボ について 2019/06/12 みんなのPython勉強会#46
誰? • 名前 : 伊藤 徹郎 (@tetsuroito) • 所属 :
Classi株式会社 データAI部 • 属性:データサイエンティスト • マイブーム:スパイスカレー • コミュニティ ◦ Data Analyst Meetup Tokyo ◦ Machine Learning Casual Talk ◦ Data Pipeline Casual Talk など
会社の宣伝
会社の宣伝
先週の話 ワタクシ
今日の話 • 去年出版した書籍(技術評論社) • DS養成読本シリーズ5作目 • 10人の著者によるオムニバス形式 • 主な内容 ◦
分析PJあるある ◦ ちょっとしたTips (Pythonどころかコードは1行も出てきません) 私が著者代表の一人です
何が書いてあるの?
何が書いてあるの? 分析プロジェクトの 機能要件ではなく、 非機能要件でつまづきや すいポイントのポエム
養成読本関連は色々記事あるので、そっち見て
閑話 休題
• 相手の言動の真意を理解する • 自分の言動を相手がどう捉えているかを理 解する • 育った環境や価値観が異なる人と働くとき に、行き違いや誤解を生むことなく、確かな 信頼を築く技術 異文化理解力の重要性
最近のチームでも異なる文化の職種が多い マネジメント マーケティング エンジニアリング 製造・開発 サポート 販売 デザイン データサイエンス
データサイエンスとエンジニアリングの違い PoCやプロトをプロダクションに乗せたい 引用: https://towardsdatascience.com/research-oriented-code-in-ai-ml-projects-f0dde4f9e1ac
データサイエンスとエンジニアリングの違い PoCやプロトをプロダクションに乗せたい 引用: https://towardsdatascience.com/research-oriented-code-in-ai-ml-projects-f0dde4f9e1ac コードのリファクタリングまった なし!
• 環境が同期してなくて動かない • Pythonっぽくないコードの書き方 • 何を計算しているかよくわからない • それ必要?.pyの存在 • Pandasが使われていてメモリが...
• 運用って言葉知ってますか? • テストコード is どこ etc ... データサイエンス系のコードのリファクタがむずい *フィクションです
リファクタリングの理解が噛み合わない例 エンジニア データサイエンティスト 可読性・効率・高速化 などのためにリファクタ Jupyterの途中結果消して 綺麗にすればいいんでしょ?
• 相手の言動の真意を理解する • 自分の言動を相手がどう捉えているかを理 解する • 育った環境や価値観が異なる人と働くとき に、行き違いや誤解を生むことなく、確かな 信頼を築く技術 (再掲)異文化理解力の重要性
• 相手の言動の真意を理解する • 自分の言動を相手がどう捉えているかを理 解する • 育った環境や価値観が異なる人と働くとき に、行き違いや誤解を生むことなく、確かな 信頼を築く技術 (再掲)異文化理解力の重要性
お互いに背景を理解する 努力をしましょう!
コミュニケーションをきちんととる • SlackなどでHRTにもとづき、普段から会話する • 心理的安全にもとづいた雑談ちょー大事 • 顔を合わせて会話する機会を作る • 炎上しない優しいPull Request
• コードを憎んで人を憎まず • 実装意図とか、その人の書き方の好みとかを知る
Google Colabでペアプロしてみる
機械学習や理論の勉強会をしてみる
達成したい目的 解決したい課題 同期 実装
• 近年の現場では多様な背景のメンバーが多い • データサイエンスPJの場合も例外じゃない • それぞれのコンテキストを読み取ろう • 粒度を変えてもそれは起きうる • 目的を念頭に適切なHowを選択しよう
まとめ
最後に PyCon US 共有会やるので、来てね!
ご静聴 ありがとう ございました