Upgrade to Pro — share decks privately, control downloads, hide ads and more …

生成AIの不確実性と向き合うためのオブジェクト指向設計

 生成AIの不確実性と向き合うためのオブジェクト指向設計

Object-Oriented Conference 2024 でのランチセッション資料です。
セッションでは、本資料をベースに 増田亨さんとディスカッションさせていただきました。

takuya kikuchi

March 24, 2024
Tweet

More Decks by takuya kikuchi

Other Decks in Technology

Transcript

  1. ⽣成AIを「使う」ということ 11 • ⽇々の開発において活⽤する ◦ GitHub Copilot / Copilot /

    ChatGPT / Cursor … • プロダクトに組み込む © 2024 Algomatic Inc.
  2. ⽣成AIを「使う」ということ 12 • ⽇々の開発において活⽤する ◦ GitHub Copilot / ChatGPT /

    Cursor… • プロダクトに組み込む →こちらの話をメインにします © 2024 Algomatic Inc.
  3. 15 B2Bのシステムを作っていると、「扱いにくいデータ」に出くわすことが多い たとえば: 飲⾷店向けシステム: - 「メイン商品の売り上げを集計したい!」 - 「アイスクリームの売り上げ個数を集計したい!」 ⽣成AIのユースケースを技術視点で考える ©

    2024 Algomatic Inc. レストランB • パンケーキ • いちごパンケーキ • アイス • コーヒー • 紅茶 レストランA • ハンバーグ定⾷ • チキン南蛮定⾷ • コーラ • パンケーキ • アイスクリーム
  4. ⽣成AIのユースケースを体験から考える • Automation(⾃動化) ◦ ⼈がやりたくない作業(危険、⼼理的にしんどい、など) ◦ ⼈ではやりきれない作業(量が多すぎるとか) • Agent(代⾏) ◦

    ⼈が持っていない知識、スキルに基づいた作業など • Advice(助⾔) ◦ ⼈が責任を取る必要がある作業 ◦ ⼈の内省、成⻑を促す作業など • Augment(強化) ◦ たのしい作業 ◦ リアルタイム性が求められる作業 © 2024 Algomatic Inc. 18
  5. ⽣成AIプロダクトの難しいところ 21 • 基盤技術の進歩が早い ◦ 2022年 11⽉: ChatGPT (OpenAI) ◦

    2023年 7⽉: GPT-4 API (OpenAI) → めっちゃかしこい ◦ 2023年 11⽉: GPT-4 Turbo (OpenAI) → (従来⽐)回答が早い ◦ 2023年 11⽉: GPT-4-V, DALL-E3 (OpenAI)  → テキスト以外の⼊出⼒が可能になった ◦ 2023年 12⽉: Gemini (Google) ◦ 2024年 2⽉: groq (Groq) → 回答速度が驚くほど早い ◦ 2024年 2⽉: Gemini Ultra (Google) ◦ 2024年 2⽉: Claude3-Opus (Anthropic) → かしこい、⻑⽂を扱うタスクの精度が⾼い © 2024 Algomatic Inc.
  6. ⽣成AIプロダクトの難しいところ 22 • ちなみにそれぞれ何が違うの? ◦ コンテキスト⻑ ▪ AIに渡せる⽂字数の⻑さ。GPT-4では8k~32kだったが、 GPT-4 Turboでは128k,

    Claude 3 Opusでは200k, Gemini1.5 Proは 1M。 ▪ 参考: 100ページ程度の説明書: 20k tokenほど ◦ 価格 ▪ やりとりしたトークン数(⽂字数)による従量制。安いほど嬉しい ◦ 速度 ▪ 早いほど嬉しい。ただし、賢いモデルほど速度は遅くなりがち ◦ 精度 ▪ ⾔語処理タスクのスコア。GPT-4が基準にされがち。 © 2024 Algomatic Inc.
  7. ⽣成AIプロダクトの難しいところ 23 • シンプルに「遅くて⾼額なAPI」 ◦ 何でもかんでも使えるわけではない ◦ 使える部分、使えない部分を⾒極める ▪ 「⼀時的に⽣成AIで楽をして、あとからちゃんと作る」などもあったりする

    ◦ 体験設計も含めて検討が必要 • ⽣成AIとの結合度合いをどう考えるか ◦ 別のモデルに切り替えることになるかも ◦ LLMを使わない実装に切り替えることになるかも ▪ →いざとなったら切り離せる設計が必要なことも多い ◦ プロダクトのコアはどこか、変わりうる部分、変わらない部分はどこか © 2024 Algomatic Inc.
  8. 補⾜: RAGとは • 外部のデータベースや知識をもとにした回答を⼤規模⾔語モデルに⽣成させ る技術 © 2024 Algomatic Inc. 28

    Algomatic 社内 ドキュメント 経費申請 どうしたらいい? ⼀般的にはこうだよ! 経費申請 どうしたらいい? このフォームから必要事 項を記⼊して送ってね! 検索 検索結果 RAGなし RAGあり
  9. RAGとは - RAGの頑張りどころ • RAGの営みをざっくり整理すると ◦ ユーザーの発話から「何を知りたいのか」を認識し ◦ 答えるために必要な情報を検索し ◦

    検索結果を踏まえ、正しくわかりやすい回答を⽣成する © 2024 Algomatic Inc. 29 Algomatic 社内 ドキュメント 引っ越しました! このフォームから住所変 更してね! 検索 検索結果