Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習を用いた大相撲千秋楽の勝敗予想 / sumo prediction by machin...
Search
Shotaro Ishihara
August 24, 2019
Technology
0
2.1k
機械学習を用いた大相撲千秋楽の勝敗予想 / sumo prediction by machine learning
Sports Analyst Meetup #4 (
https://spoana.connpass.com/event/138392/
) での発表資料。
Shotaro Ishihara
August 24, 2019
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
270
日本語新聞記事を用いた大規模言語モデルの暗記定量化 / LLMC2025
upura
0
360
Quantifying Memorization in Continual Pre-training with Japanese General or Industry-Specific Corpora
upura
1
65
JOAI2025講評 / joai2025-review
upura
0
1.1k
AI エージェントを活用した研究再現性の自動定量評価 / scisci2025
upura
1
190
JSAI2025 企画セッション「人工知能とコンペティション」/ jsai2025-competition
upura
0
69
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
310
Semantic Shift Stability: 学習コーパス内の単語の意味変化を用いた事前学習済みモデルの時系列性能劣化の監査
upura
0
93
日本語ニュース記事要約支援に向けたドメイン特化事前学習済みモデルの構築と活用 / t5-news-summarization
upura
0
110
Other Decks in Technology
See All in Technology
エンジニアリングをやめたくないので問い続ける
estie
2
1k
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
660
Edge AI Performance on Zephyr Pico vs. Pico 2
iotengineer22
0
120
コミューンのデータ分析AIエージェント「Community Sage」の紹介
fufufukakaka
0
470
AI時代の開発フローとともに気を付けたいこと
kkamegawa
0
2.7k
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
260
A Compass of Thought: Guiding the Future of Test Automation ( #jassttokai25 , #jassttokai )
teyamagu
PRO
1
250
エンジニアリングマネージャー はじめての目標設定と評価
halkt
0
270
eBPFとwaruiBPF
sat
PRO
4
2.5k
EM歴1年10ヶ月のぼくがぶち当たった苦悩とこれからへ向けて
maaaato
0
270
Sansanが実践する Platform EngineeringとSREの協創
sansantech
PRO
2
770
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
690
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Statistics for Hackers
jakevdp
799
230k
Building Adaptive Systems
keathley
44
2.9k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Producing Creativity
orderedlist
PRO
348
40k
Facilitating Awesome Meetings
lara
57
6.7k
KATA
mclloyd
PRO
32
15k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Side Projects
sachag
455
43k
Transcript
ػցֶशΛ༻͍ͨ େ૬ઍळָͷউഊ༧ V !VQVSB "VHUI 4QPSUT"OBMZTU.FFUVQ
V ͷඋ • େ૬ͷσʔλऩूʮ4VNP3FGFSFODFʯ͕ศར • ʲՄࢹԽฤʳػցֶशΛ༻͍ͨେ૬ઍळָͷউഊ༧ • ʲϕϯνϚʔΫฤʳػցֶशΛ༻͍ͨେ૬ઍळָͷউ ഊ༧ •
ʲಛྔͷՃฤʳػցֶशΛ༻͍ͨେ૬ઍळָͷউ ഊ༧ (JU)VC • IUUQTHJUIVCDPNVQVSBTVNPQSFEJDUPS ϦϯΫू
࣍ • എܠˍత • σʔλͷऔಘ • ػցֶशϞσϧͷ࡞ • ಛྔͷՃ
• ݁ˍࠓޙͷల
• V !VQVSB • ࣄۀձࣾͷσʔλαΠΤϯςΟετ • TQPBOBӡӦ • ΘΜͺ͘૬໊ݹॴϕετ
࿈ଓ • ,BHHMF.BTUFS "U$PEFS ਫ ࣗݾհ
• ૬ͷσʔλΛ༻͍ͯɺػցֶशͰ ༧ଌϞσϧΛߏஙͰ͖ͳ͍͔ʁ • ૬ͷྗ࢜ใͰͳ͘ɺউͪෛ͚ ͷ࣌ܥྻใ͔Β༧ଌͯ͠Έ͍ͨ • ˞झຯͳͷͰશͳख๏υϦϒϯ ૬
º ,BHHMF
উͪෛ͚ͷ࣌ܥྻใ ˓˔˔˔˓ ˓˔˓˔˔ ˔˓˔˔ʁ ˔˓˓˓˓ ˔˔˓˔˓ ˓˔˔˓ʁ
࣍ • എܠˍత • σʔλͷऔಘ • ػցֶशϞσϧͷ࡞ • ಛྔͷՃ
• ݁ˍࠓޙͷల
• IUUQTVNPECTVNPHBNFTEF • TQPBOB Ͱͬͨ • ૬ͷ֤छσʔλ͕ཧ͞Ε͍ͯΔ • ྗ࢜ •
൪ • औΓΈ ͳͲ 4VNP3FGFSFODF
• 1ZUIPOͰඵ͝ͱʹॴͷσʔλ ΛऔಘɾՃͯ͠DTWͰอଘ • ʙͷσʔλ औಘ
• ྗ໊࢜ • ʙͷউഊ • ઍळָͷରઓྗ࢜ • ॴʢZZZZNNʣ • ઍळָͷউഊʢతมʣ
σʔλ߲
σʔλͷՄࢹԽ
• উഊͷ߹ͷউ͕ʢউഊ উഊͷ߹ʹൺͯʣߴ͍ • ·Ͱʹʙউ͍ͯ͠Δ ߹উ͕ΑΓߴ͍ • ˞ʮീඦʯͷٞΛ͢Δʹ ѻ͍ͬͯΔใྔ͕গͳ͗͢Δ
ߟ
࣍ • എܠˍత • σʔλͷऔಘ • ػցֶशϞσϧͷ࡞ • ಛྔͷՃ
• ݁ˍࠓޙͷల
σʔλͷׂ
• ྗ໊࢜ • ʙͷউഊ • ऴྃ࣌ͷউͪ • ઍळָͷରઓྗ࢜ • ॴʢZZZZNNʣ
• ઍळָͷউഊʢతมʣ ಛྔɾతม
• -JHIU(#.ʢ,BHHMFͰఆ൪ʣ • ܾఆΛେྔʹ࡞Δྨث • ಛྔ͕গͳ͍ͷΛҙࣝͯ͠ɺϋΠ ύʔύϥϝʔλΛखಈͰௐͨ͠ ػցֶशΞϧΰϦζϜ
• $7είΞɺ"6$ • UFTUɺ"6$ "$$ $7UFTUͷྨੑೳ
࣍ • എܠˍత • σʔλͷऔಘ • ػցֶशϞσϧͷ࡞ • ಛྔͷՃ
• ݁ˍࠓޙͷల
• ྗ໊࢜ • ʙͷউഊ • ·Ͱͷউͪ • ରઓྗ࢜ͷ·Ͱͷউͪ • ઍळָͷରઓྗ࢜
• ॴʢZZZZNNʣ • ઍळָͷউഊʢతมʣ ಛྔɾతม
• $7είΞɺ"6$ • UFTUɺ"6$ ɺ"$$ $7UFTUͷྨੑೳ
• ʮ·Ͱͷ࿈উɾ࿈ഊʯ $7UFTUͷྨੑೳͱʹඍ૿ • ͦͷଞͷ࣌ܥྻಛΛ lUTGSFTIzͰ େྔʹੜʢݸऑʣ͠ݸ࠾༻ ˠ$7UFTUͷྨੑೳ͕վળͤͣ ૣʑʹߦ͖٧·Δɾɾɾ
IUUQTUTGSFTISFBEUIFEPDTJPFOMBUFTU
࣍ • എܠˍత • σʔλͷऔಘ • ػցֶशϞσϧͷ࡞ • ಛྔͷՃ
• ݁ˍࠓޙͷల
• ػցֶशΛ༻͍ͯɺେ૬ઍळָͷ উഊΛ༧ͨ͠ • -JHIU(#.ϕʔεͰಛྔΛ૿͠ ͍ͯ͘ํ๏ʹݶք͕͋Γͦ͏ • ˞ͦͦ͜ͷใͰ༧Ͱ͖Δ͔ ୭ʹ͔Βͳ͍
݁
• ผͷػցֶशϞσϧΛࢼ͢ • উͪෛ͚ͷʮʯͷྲྀΕΛ 3//ʹೖΕΔ͜ͱͰɺௐࢠͷΛ ଊ͑ΒΕΔʁ • ࣍ճҎ߱ɺ·ͨൃද͠·͢ ࠓޙͷల