Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ruby/Rails Benchmarking and Profiling with TDD
Search
Yasutomo Uemori
PRO
September 15, 2019
Programming
0
61
Ruby/Rails Benchmarking and Profiling with TDD
大阪Ruby会議02での発表資料です
https://regional.rubykaigi.org/osaka02/
Yasutomo Uemori
PRO
September 15, 2019
Tweet
Share
More Decks by Yasutomo Uemori
See All by Yasutomo Uemori
よくわかる新収益認識基準
wakaba260
PRO
0
840
いまどきのゲームサーバアーキテクチャ
wakaba260
PRO
1
420
オンラインゲームのRails複数db戦略
wakaba260
PRO
0
80
Active job meets kubernetes
wakaba260
PRO
0
37
GCP・GKEで作るスケーラブルなゲーム開発環境
wakaba260
PRO
0
72
サービスクラス、その前に
wakaba260
PRO
0
36
Rails on Dockerとの戦い
wakaba260
PRO
0
37
Rubocopとの付き合い方
wakaba260
PRO
0
41
Rails api way in aiming
wakaba260
PRO
0
42
Other Decks in Programming
See All in Programming
CSC307 Lecture 10
javiergs
PRO
1
660
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
CSC307 Lecture 05
javiergs
PRO
0
500
AI & Enginnering
codelynx
0
120
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
7
2.4k
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
390
登壇資料を作る時に意識していること #登壇資料_findy
konifar
4
1.5k
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
Best-Practices-for-Cortex-Analyst-and-AI-Agent
ryotaroikeda
1
110
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
220
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
980
Featured
See All Featured
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
120
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
The Invisible Side of Design
smashingmag
302
51k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
100
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
650
Accessibility Awareness
sabderemane
0
53
Transcript
Ruby/Rails Benchmarking and Profiling with TDD 2019/09/14 Osaka Ruby Kaigi02
Yasutomo Uemori (wakaba260)
me.inspect => { “HN”: "wakaba260", “name”: "Yasutomo Uemori", “company”: "株式会社Aiming",
“twitter”: "https://twitter.com/wakaba260yen", “github”: "https://github.com/yuemori", “skills”: ["rails api", "docker", "kubernetes", "GCP"] }
突然ですが
Ruby/Railsの プロファイルや ベンチマーク
とったことある人?
今日の話はこんな人向けの話 - Ruby/Railsのベンチマークやプロファイリングに興味がある - パフォーマンス改善にどう手を付けていいかわからない ⇛ 主に初心者向けの話
Agenda 話すこと - Benchmark and Performance Testing - チューニングを行ったときの取り組み 話さないこと
- Rackサーバのチューニング - 改善をしたときの実装内容
Benchmark and Performance Testing
はじめに大事なこと
推測するな 計測せよ
プログラミングで時間がかかっている場所を 推測してはいけない。
どうやって 計測しよう🤔
Testing そうだ、テストを書こう
なぜTestを書くのか 我々は普段からアプリケーションに対しテストを書いている - エラーがないこと - バグが修正されたこと - 仕様どおりに動くこと こういったことを再現性高く保証するためにテストがある ⇛ パフォーマンスについてもテストを書きたい
Red Green Refactor Standard TDD
Benchmark Profile Refactor Performance TDD
Benchmark Profile Refactor 実行速度を計測
Benchmark Profile Refactor 原因箇所を特定
Benchmark Profile Refactor コードを改善
Benchmark Profile Refactor 改善されたことを確認
Benchmark Profile Refactor Measure Measure Improve
Benchmark Profile Refactor Measure Measure Improve 計測、計測、そして改善
💎今回テストを書くのに使ったgemたち ・Testing:RSpec ・Benchmark:module Benchmark ・Profile:https://github.com/tmm1/stackprof
Benchmark プロファイリングとあわせてベンチマークは必ずとっておこう - 実際にどのぐらい時間がかかるか?を把握する - プロファイリングを有効にすると、実行速度自体が下がる - 一回だけの実行ではばらつきが出やすいのでウォームアップや実 行回数もポイント
Benchmark module ・公式のベンチマークライブラリ ・簡単な計測ならこれだけで十分
Profiling 速度計測後はプロファイリングを行い、ボトルネックを特定する - 速度を計測したあと、どこが遅いかを推測で直さない - 利用しているミドルウェアや外部サービスが遅いなどもある程度わ かる
Stackprof a sampling call-stack profiler for ruby 2.1+ ・mode, interval,
outを指定してサンプリング対象のコードを ブロックで呼び出すだけ ・CPU Clock Time: CPUの利用時間。 Wall Clock Time: 開始から終了までの時間。Railsの場合はこれ 参考:https://scoutapm.com/blog/profiling-rails-with-stackprof
Stackprof
Stackprof 総サンプリング回数
Stackprof そのメソッドが呼び出しているメソッドの時間も含めた、 TOTALのサンプリング回数
Stackprof 純粋にそのメソッドの サンプリング回数
Stackprof 処理に時間がかかっている箇所
Stackprof 呼び出している処理のため、 時間がかかっている箇所
Stackprof-webnav
Stackprof-webnav 行単位で時間がかかっている箇所を表示できる
Stackprof-webnav 一番時間がかかっている場所を特定!
Stackprof --flamegraph ・上記のようなflamegraphのhtmlを生成してくれる ・呼び出しのスタックトレースや時間などが可視化されるので便利
実践 https://github.com/yuemori/performance_test_app demo1 demo2
最低限のテストは 出来るようになった
Problem ?
Problem めんどくさい
Problem めんどくさい ・手動実行に頼っている ・目視確認に頼っている ⇛ 一度直った問題が再発してないかを確認しにくい ⇛ もっと複雑なケースだとテストケースの再現性も問題
Performance Spec
Performance Spec
Performance Spec
詳細 https://github.com/yuemori/performance_test_app
余談 既にそういったgemがあることに後から気づいた - https://github.com/piotrmurach/rspec-benchmark - https://github.com/rails/rails-perftest また必要になったときにはこれらを使うかどうかも検討したい
ここまでのまとめ 手早くパフォーマンス改善を行うためにはどうしたらいいか - パフォーマンスチューニングにおいては計測が重要 - いろんなgemを使って計測を楽にする - 計測とチューニングのサイクルを確立する
パフォーマンス 改善時のとりくみ
パフォーマンス改善時の取り組み - 改善箇所の調査 - パフォーマンステスト - パフォーマンス改善方法論の共有
社内テスト内容から遅いAPIの調査 - 改善箇所を検討するために遅いAPIはどこかを調査 - アクセスログからレポートを作成 - 指標 - 総リクエスト数 -
平均レスポンス速度 - 最大レスポンス速度 - 50%、90%、99%、99%...のレスポンス速度
社内テスト内容から遅いAPIの調査
・・・どこから手を付けていこう?🤔 社内テスト内容から遅いAPIの調査
社内テスト内容から遅いAPIの調査:チューニングの検討 - サービスとして遅い箇所が問題になるもの - 例)毎回ログインに時間がかかる - 共通処理で遅いもの - 例)毎回呼び出される認証が遅い -
遅い原因が他の問題を引き起こすもの - 例)N+1問題が原因なためDBへの負荷が懸念される
呼び出し頻度は少ないが取得系なので、 かなり酷いN+1なことが予想されるので直したい 社内テスト内容から遅いAPIの調査
同じくN+1っぽいが、ほとんど呼ばれないため 優先度を下げる 社内テスト内容から遅いAPIの調査
平均速度は上位に比べると早いが、 速度劣化の仕方が激しいので原因を見ておきたい 社内テスト内容から遅いAPIの調査
気になるほど遅いわけではないが、 呼び出し回数が飛び抜けて高いのでもう少し早くしたい 社内テスト内容から遅いAPIの調査
社内テスト内容から遅いAPIの調査:計測方法 - ログから計測 - 今回はStackdriver + BigQuery + DataPortal -
構造化ログを出しておくことで集計が容易になる - サービスの利用 - NewRelicやDatadogなど - productionではおすすめ - CIやローカルで実行するのに難がある
パフォーマンステスト - 紹介した実装をベースにテスト環境を整備 - DBのボトルネック調査にクエリレポートを追加実装 - ActiveSupport::Notificationsを使ってクエリをトレース
パフォーマンステスト:クエリレポート - railsの提供するイベントから計測、集計 - テスト時に実行されるSQLのレポートを作成して可視化
パフォーマンス改善方法論の共有 チューニングを個人に依存しないようにしたいと考えていた - 実際にチューニングを行ったときのことをチーム内勉強会で共有 - ドキュメントの作成 ⇛ 方法論を共有することでチューニングをチームのものにする💪
パフォーマンス改善方法論の共有:ドキュメントの作成
パフォーマンス改善方法論の共有:ドキュメントの作成
パフォーマンス改善方法論の共有:レビュー - パフォーマンス改善のPRを出した時はdescriptionに結果を記載 - 改善時にチェックしたポイントをわかりやすくする - before/afterを掲載して改善されていることを伝える
パフォーマンス改善方法論の共有:レビュー
パフォーマンス改善方法論の共有:レビュー
まとめ - パフォーマンス改善の心得:推測するな、計測せよ - パフォーマンスのテストコードを書いて改善を楽にしよう - パフォーマンス改善は楽しいので是非Tryしてみてください
ご静聴 ありがとうございました