Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ICH E14 QT間隔延長の評価 2
Search
xjorv
February 19, 2021
Education
0
440
ICH E14 QT間隔延長の評価 2
ICH E14はQT間隔延長の評価についてのガイドラインです。2では、Thorough QT study(徹底的なQT研究)。の後の臨床評価と、心電図データの取り扱いについてまとめています。
xjorv
February 19, 2021
Tweet
Share
More Decks by xjorv
See All by xjorv
コンパートメントモデル
xjorv
3
5.7k
コンパートメントモデルをStanで解く
xjorv
0
460
生物学的同等性試験 検出力の計算法
xjorv
0
3.6k
生物学的同等性試験ガイドライン 同等性パラメータの計算方法
xjorv
0
6.3k
粉体特性2
xjorv
0
2.5k
粉体特性1
xjorv
0
2.9k
皮膜5
xjorv
0
2.4k
皮膜4
xjorv
0
2.3k
皮膜3
xjorv
0
2.3k
Other Decks in Education
See All in Education
Entrepreneurship minor course at HSE 2025
karlov
0
100
20250807_がんばらないコミュニティ運営
ponponmikankan
0
190
情報科学類で学べる専門科目38選
momeemt
0
630
吉岡研究室紹介(2025年度)
kentaroy47
0
340
あなたの言葉に力を与える、演繹的なアプローチ
logica0419
1
170
大学院進学について(2025年度版)
imash
0
130
「実践的探究」を志向する日本の教育研究における近年の展開 /jera2025
kiriem
0
110
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
2025年度春学期 統計学 第13回 不確かな測定の不確かさを測る ー 不偏分散とt分布 (2025. 7. 3)
akiraasano
PRO
0
140
生成AI活用セミナー/GAI-workshop
gnutar
0
120
Human Perception and Cognition - Lecture 4 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.2k
みんなのコード 2024年度活動報告書/ 2025年度活動計画書
codeforeveryone
0
340
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Git: the NoSQL Database
bkeepers
PRO
431
66k
How to train your dragon (web standard)
notwaldorf
96
6.3k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
980
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Site-Speed That Sticks
csswizardry
11
900
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
YesSQL, Process and Tooling at Scale
rocio
173
14k
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
Six Lessons from altMBA
skipperchong
28
4k
Designing for humans not robots
tammielis
254
26k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Transcript
ICH E14 QT間隔延長の評価 2 2021/1/24 Ver. 1.0
徹底的なQT研究の後の臨床評価 結果が陰性か陽性かにより異なる • 陰性ならほぼ追加のQT研究は必要ない • 陽性なら、使用用量/濃度との関係について追加研究を行う • 不整脈リスクの患者、最大容量についての検証が必要 • 特に外れ値となる患者に注目した研究を行う
徹底的なQT研究の後の臨床評価 結果が陰性か陽性かにより異なる • 陽性なら開発後期に心電図による検証を行う • 心疾患的AEを引き起こした患者での情報を収集する • 陰性でも、開発中に心疾患的AEが見られれば、検証する
健康成人で徹底的なQT研究を実施しないとき 安全性や忍容性のため、健康成人を対象とできないとき • 対象患者群を対象としたQT研究を行う • 患者も対象にできない場合は他の方法を検討する • 用量応答性における心電図応答を調べたりする
心電図データの収集・検証・報告 通常12-lead surface ECGを取る • デジタルデータとして扱えるようにすることが望ましい • 多施設研究では測定法の均一化が重要となる • 心電図を読む者は盲検下に置く
• lead1、2でQTを読み、T-Uの波形異常も報告する • 報告は地域の規制当局に従う *12誘導心電図 https://www.kango-roo.com/word/10220
携帯型心電図モニタリング 通常は十分信頼性のある方法だとは考えられていない • 日常時に起こる異常を捉えられる点で利点がある • QTcの計算の補正に使用できることもある • 通常の心電図とは直接比較はできない
心電図データの分析 分析データは安全性データベースの基本的要素となる • AEとして得られた心電図データはすべてプールする • 徹底的なQT研究のデータをプールする • QTデータは心拍数で補正する • QT、RR、心拍数、QTcを報告する
*QTcの計算にはBazett’s & Fridericia’s correctionsを用いるとされている
心電図データの補正 以下の式で補正する 𝑄𝑇𝑐 = 𝑄𝑇 𝑅_𝑅 𝑄𝑇𝑐 = 𝑄𝑇 𝑅_𝑅0.33
Fridericia’s correction Bazett’s correction Fridericiaの方法の方がより正確
心電図データの補正 線形回帰を用いた補正も可能 𝑄𝑇 = 𝑎 + 𝑏(1 − 𝑅_𝑅) •
データをプールしておいて、回帰で求める • 被験者個々人に対して回帰しておいて補正してもよい
QT/QTcデータの解析 外れ値やばらつきのため、正確な解析は難しい • ベースラインの正確性が解析に影響を与える • 代表値とカテゴリカルデータとして両方で解析する