Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ICH E14 QT間隔延長の評価 2
Search
xjorv
February 19, 2021
Education
0
450
ICH E14 QT間隔延長の評価 2
ICH E14はQT間隔延長の評価についてのガイドラインです。2では、Thorough QT study(徹底的なQT研究)。の後の臨床評価と、心電図データの取り扱いについてまとめています。
xjorv
February 19, 2021
Tweet
Share
More Decks by xjorv
See All by xjorv
コンパートメントモデル
xjorv
3
5.8k
コンパートメントモデルをStanで解く
xjorv
0
470
生物学的同等性試験 検出力の計算法
xjorv
0
3.6k
生物学的同等性試験ガイドライン 同等性パラメータの計算方法
xjorv
0
6.4k
粉体特性2
xjorv
0
2.5k
粉体特性1
xjorv
0
2.9k
皮膜5
xjorv
0
2.4k
皮膜4
xjorv
0
2.3k
皮膜3
xjorv
0
2.3k
Other Decks in Education
See All in Education
Cifrado asimétrico
irocho
0
310
Semantic Web and Web 3.0 - Lecture 9 - Web Technologies (1019888BNR)
signer
PRO
2
3.1k
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
KBS新事業創造体験2025_科目説明会
yasuchikawakayama
0
140
ThingLink
matleenalaakso
28
4.2k
JavaScript - Lecture 6 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Master of Applied Science & Engineering: Computer Science & Master of Science in Applied Informatics: Artificial Intelligence and Data Science
signer
PRO
0
850
DIP_3_Frequency
hachama
0
310
Software
irocho
0
630
Microsoft Office 365
matleenalaakso
0
2k
Library Prefects 2025-2026
cbtlibrary
0
140
DIP_2_Spatial
hachama
0
330
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Visualization
eitanlees
150
16k
Thoughts on Productivity
jonyablonski
73
4.9k
The Cult of Friendly URLs
andyhume
79
6.7k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.2k
Into the Great Unknown - MozCon
thekraken
40
2.2k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Building an army of robots
kneath
306
46k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Bash Introduction
62gerente
615
210k
Transcript
ICH E14 QT間隔延長の評価 2 2021/1/24 Ver. 1.0
徹底的なQT研究の後の臨床評価 結果が陰性か陽性かにより異なる • 陰性ならほぼ追加のQT研究は必要ない • 陽性なら、使用用量/濃度との関係について追加研究を行う • 不整脈リスクの患者、最大容量についての検証が必要 • 特に外れ値となる患者に注目した研究を行う
徹底的なQT研究の後の臨床評価 結果が陰性か陽性かにより異なる • 陽性なら開発後期に心電図による検証を行う • 心疾患的AEを引き起こした患者での情報を収集する • 陰性でも、開発中に心疾患的AEが見られれば、検証する
健康成人で徹底的なQT研究を実施しないとき 安全性や忍容性のため、健康成人を対象とできないとき • 対象患者群を対象としたQT研究を行う • 患者も対象にできない場合は他の方法を検討する • 用量応答性における心電図応答を調べたりする
心電図データの収集・検証・報告 通常12-lead surface ECGを取る • デジタルデータとして扱えるようにすることが望ましい • 多施設研究では測定法の均一化が重要となる • 心電図を読む者は盲検下に置く
• lead1、2でQTを読み、T-Uの波形異常も報告する • 報告は地域の規制当局に従う *12誘導心電図 https://www.kango-roo.com/word/10220
携帯型心電図モニタリング 通常は十分信頼性のある方法だとは考えられていない • 日常時に起こる異常を捉えられる点で利点がある • QTcの計算の補正に使用できることもある • 通常の心電図とは直接比較はできない
心電図データの分析 分析データは安全性データベースの基本的要素となる • AEとして得られた心電図データはすべてプールする • 徹底的なQT研究のデータをプールする • QTデータは心拍数で補正する • QT、RR、心拍数、QTcを報告する
*QTcの計算にはBazett’s & Fridericia’s correctionsを用いるとされている
心電図データの補正 以下の式で補正する 𝑄𝑇𝑐 = 𝑄𝑇 𝑅_𝑅 𝑄𝑇𝑐 = 𝑄𝑇 𝑅_𝑅0.33
Fridericia’s correction Bazett’s correction Fridericiaの方法の方がより正確
心電図データの補正 線形回帰を用いた補正も可能 𝑄𝑇 = 𝑎 + 𝑏(1 − 𝑅_𝑅) •
データをプールしておいて、回帰で求める • 被験者個々人に対して回帰しておいて補正してもよい
QT/QTcデータの解析 外れ値やばらつきのため、正確な解析は難しい • ベースラインの正確性が解析に影響を与える • 代表値とカテゴリカルデータとして両方で解析する