Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
金研究室 勉強会 『Attention is all you need』
Search
winnie279
August 12, 2021
Science
0
130
金研究室 勉強会 『Attention is all you need』
Attention is all you need, Ashish et al., 2017, arXiv:1706.03762
winnie279
August 12, 2021
Tweet
Share
More Decks by winnie279
See All by winnie279
「みえるーむ」(都知事杯Open Data Hackathon 2024 Final Stage)
yjn279
0
60
「みえるーむ」(都知事杯オープンデータ・ハッカソン 2024)
yjn279
0
67
5分で学ぶOpenAI APIハンズオン
yjn279
0
200
『確率思考の戦略論』
yjn279
0
140
Amazonまでのレコメンド入門
yjn279
1
160
もう一度理解するTransformer(後編)
yjn279
0
79
金研究室 勉強会 『もう一度理解する Transformer(前編)』
yjn279
0
100
金研究室 勉強会 『U-Netとそのバリエーションについて』
yjn279
0
660
金研究室 勉強会 『Seismic Data Augmentation Based on Conditional Generative Adversarial Networks』
yjn279
0
96
Other Decks in Science
See All in Science
データベース03: 関係データモデル
trycycle
PRO
1
260
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
620
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
320
mathematics of indirect reciprocity
yohm
1
180
Lean4による汎化誤差評価の形式化
milano0017
1
300
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
620
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
190
KH Coderチュートリアル(スライド版)
koichih
1
45k
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.2k
07_浮世満理子_アイディア高等学院学院長_一般社団法人全国心理業連合会代表理事_紹介資料.pdf
sip3ristex
0
600
ttl2html (RDF/Turtle to HTML)
masao
0
110
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1k
Featured
See All Featured
Become a Pro
speakerdeck
PRO
29
5.5k
Code Review Best Practice
trishagee
70
19k
BBQ
matthewcrist
89
9.8k
Scaling GitHub
holman
463
140k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
800
The Invisible Side of Design
smashingmag
301
51k
Visualization
eitanlees
148
16k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
GraphQLとの向き合い方2022年版
quramy
49
14k
Music & Morning Musume
bryan
46
6.8k
A Tale of Four Properties
chriscoyier
160
23k
Transcript
Attention Is All You Need Ashish et al., 2017, arXiv:1706.03762
金研 機械学習勉強会 2021/08/12 中村勇士
Transformerとは? • RNNの問題点 ◦ 長い入力が苦手 ◦ 勾配消失問題が起こりやすい ◦ 並列化が困難 →
GPUによる学習の効率化・大量のデータによる学習が困難 • Transformerによる解決 ◦ 再帰や畳み込みを使用しない ◦ 大規模なモデル・データを使用可能 ◦ 精度の大幅な向上
EQTransformerとの関係 • Transformerをそのまま使用していない ◦ attentionをレイヤーと使用 • 疑問 ◦ Transformerの強み: 再帰や畳み込みをしないこと
◦ LSTM・Convを使って良いのか?
モデル • エンコーダ・デコーダ • Attention • フィード・フォワード・ネットワーク(FFW) • 埋め込み •
ポジショナル・エンコーディング
モデル:エンコーダ・デコーダ
• エンコーダ(左) ◦ input ◦ N = 6 • デコーダ(右)
◦ output ◦ N = 6 モデル:エンコーダ・デコーダ input からの 出力
モデル:埋め込み / ポジショナル・エンコーディング • 埋め込み:単語のベクトル化 ◦ • ポジショナル・エンコーディング ◦ 構造のベクトル化
◦ 再帰や畳み込みの必要がなくなる ◦ モデルの学習が容易になる pos: 単語の順番, i: 次元, d model : 全体の次元数
モデル:Attention • 単語間の相関を表す ◦ どの単語がどの単語に 着目してるか • Q:query • K:key
• V:value • d k :dimention
Transformerの活用 • 自然言語処理(NLP) ◦ BERT ◦ GPT-3 ◦ DALL・E(テキストから画像生成) •
その他 ◦ 地震学:EQTransformer(地震動検出・フェーズピック) ◦ 生物学:AlphaFold2(タンパク質の構造予測) ◦ 音楽:Music Transformer(作曲)
おまけ • Transformer解説:GPT-3、BERT、T5の背後にあるモデルを理解する ◦ AINOW ◦ https://ainow.ai/2021/06/25/256107 • The Illustrated
Transformer ◦ Jay Alammar ◦ http://jalammar.github.io/illustrated-transformer • Embedding Projector ◦ http://projector.tensorflow.org/
モデル:フィード・フォワード・ネットワーク(FFW) • FFW ◦ 2つの線形変換 ◦ ReLU • 学習 ◦
英独:450万の文, 37,000のトークン ◦ 英仏: