Yoriyuki Yamagata
September 09, 2019
41

Separation of Bounded Arithmetic using a consistency statement

Yoriyuki Yamagata

September 09, 2019

Transcript

1. Separation of bounded arithmetic using a consistency statement SLACS 2019,

Kyoto University Yoriyuki Yamagata AIST, Japan Sep. 9, 2019
2. This presentation about ... A possible proof strategy of Separation

of Buss’s S1 2 and S2, S1 2 S2 (?) As a corollary, P = NP (?!) I do not believe it at all, but it may contain interesting techniques or conjectures Draft: https://www.dropbox.com/s/g22x84rfdqmyx82/

4. Deﬁnition of Buss’s Si 2 [Buss, 1986] Si 2 is

formulated by PIND for Σb i -formula plus axioms Ax. 1 Ax is ﬁnite, 2 all formulas in Ax are true in the standard interpretation, 3 all formulas in Ax is quantiﬁer free, 4 Ax implies all BASICe axioms in [Buss and Ignjatovi´ c, 1995] 5 Ax implies formulas corresponding P = NP in [Takeuti, 1996] if P = NP. S2 := i=1,2,... Si 2
5. Deﬁnition of Cook’s PV [Cook, 1975] 1 Deﬁning axioms for

polynomial-time functions 2 Identity axioms 3 Substitution axiom 4 Induction axiom Consistency of (1) and (2) inside S1 2 is proven in [Beckmann, 2002] Consistency of (1) - (3) inside S2 2 is proven in [Yamagata, 2018] Deﬁnition PV− is a system obtained from PV by dropping induction axiom PV− 1 = PV− + ﬁrst order logic PV− 1 (D) is the restriction of PV− 1 in which the number of quantiﬁers and equations is bounded by D.
6. Proof strategies 1 Deﬁne PV− q (D), an extension of

PV− with ﬁnite number D of Henkin-like quantiﬁers 2 Prove consistency of PV− q (D) in S2 3 Embed PV− 1 (D) to PV− q (D) in S2 4 Prove embedded PV− 1 (D) + Ax is consistent in S2 5 Prove consistency of PV− 1 (D) + Ax is not provable in S1 2 5. is modiﬁcation of [Buss and Ignjatovi´ c, 1995] Our tasks are 1-4
7. Dependency matrix Deﬁnition A dependency matrix Q is a sequence

of 1 x(x1, . . . , xn) 2 {x}(x1, . . . , xn) in which all x are diﬀerent (but x1, . . . , xn may have overlap) x(x1, . . . , xn) is a existential quantiﬁcation which depends on x1, . . . , xn {x}(x1, . . . , xn) is a universal quantiﬁcation which depends on x1, . . . , xn A dependency matrix is almost like a Henkin quantiﬁer [Krynicki and Mostowski, 1995], but the order has meaning (to construct a semantics)
8. Language and proofs of PV− q (D) Deﬁnition Language of

S2 plus Boolean variables and terms Additional functions bit(x, y): |y|-th bit of x p is the if-then-else function p(⊥, x, y) = x and p( , x, y) = y Boolean functions !, &, ||, →, ↔ A formula of PV− q is a form Q =⇒ φ where Q is a dependency matrix and φ is an equation Deﬁnition PV− q (D)-proofs are tree of PV− q (D)-formulas built by the following axioms and rules
9. Axioms All deﬁning axioms for polynomial-time functions plus bit(ε, xW)

= ⊥ bit(0xW, ε) = ⊥ bit(1xW, ε) = bit(bx, b y) = bit(x, y) p(⊥, x, y) = x p( , x, y) = y Finite many axioms of Boolean algebra t(x1, . . . , xn) = u(x1, . . . , xn)
10. Inference: quantiﬁer reordering Q1, x(x), y([x, ]y), Q2 =⇒ φ

Q1, y([x, ]y), x(x), Q2 =⇒ φ Q1, {x}(x), {y}([x, ]y), Q2 =⇒ φ Q1, {y}([x, ]y), {x}(x), Q2 =⇒ φ Q1, x(x), {y}(y), Q2 =⇒ φ Q1, {y}(y), x(x), Q2 =⇒ φ Q1, {x}(x), y(y), Q2 =⇒ φ Q1, y(y), {x}(x), Q2 =⇒ φ where y ∈ {x} and x ∈ {y} and [. . .] means it is optional
11. Inference: removing unused quantiﬁcation Q1, x(y), Q2 =⇒ φ Q1,

Q2 =⇒ φ Q1, {x}(y), Q2 =⇒ φ Q1, Q2 =⇒ φ if x is not a free variable in Q2 =⇒ φ
12. Inference: introduction and elimination of quantiﬁers Q =⇒ φ(y) {y}(y),

Q =⇒ φ(y) Q =⇒ φ(t) Q, x(FV(t)) =⇒ φ(x) if y is not a bound variable of Q and y is a free variables of Q =⇒ φ(y) Q1, {x}(x) =⇒ φ(x) Q1 =⇒ φ(t) if FV(t) ⊆ {x}
13. Inference: axioms and equality rules Q1 =⇒ φ for axiom

φ Q1 =⇒ u = t Q1 =⇒ t = u Q1 =⇒ t = u Q2 =⇒ u = r Q1, Q2 =⇒ t = r u if Q1, Q2 is a well-formed dependency matrix
14. Inference: compatibility of equality and p-rule Q1 =⇒ t1 =

u1 · · · Qn =⇒ tn = un Q1, . . . , Qn =⇒ f (t1, . . . , tn) = f (u1, . . . , un) Q1 =⇒ t1 = u1 Q2 =⇒ t2 = u2 Q1, Q2 =⇒ p(b, t1, t2) = p(b, u1, u2)
15. A computation: idea A PV− q -proof of . .

. . Q =⇒ t = u is interpreted as a constraction of a “computation” of ξ(u) from a “computation” of ξ(t) and reverse direction, where quantiﬁers Q is interpreted by substitutions ξ
16. A computation: problem I Problem I The size of a

computation can be exponential, e.g. 2#2#2# · · · #2 Therefore, the proof cannot construct a computation of the lefthand from the righthand proj1 2 (0, 2#2#2# · · · #2) = 0 Solution Introduce unknown value ∗
17. A computation: problem II Problem What is the value of

bit(∗, ∗)? We want to interpret the value of a Boolean term as a real Boolean, not, for example, a three-valued logic, so that we can prove that ⊥ = is never derived Solution We choose the value of bit(∗, ∗) randomly, yet consistently across the same computation. For this purpose, we incorporate the evaluation of bit(∗, ∗) into an evaluation environment ρ
18. Approximate value: g-numerals Deﬁnition ([Beckmann, 2002, Yamagata, 2018]) g-numerals v

∈ W := ε | ∗ | 0v | 1v Approximate relation is deﬁned as: ε ε, v ∗, v w =⇒ bv bw for b = 0, 1, If v w then w is often written as v∗. G-numerals and Boolean values are called g-values
19. A environment and computation statement Deﬁnition An environment ρ of

t is a map uW → v ∈ W uB → b ∈ B = {⊥, } for subformulas of t t ∈ dom(ρ) ⇐⇒ ρ(t) is deﬁned. Deﬁnition A computational statement is a form t, ρ ↓ v where t is a term, ρ is an environment and v is a g-value.
20. Computation rules I Computations are DAGs built by the following

rules: tW, ρ ↓ ∗ ∗ x, ρ ↓ v∗ Env where v = ρ(x) v, ρ ↓ v∗ v where v is a numeral t, ρ ↓ v bt, ρ+ ↓ bv∗ b where b is either 0 or 1 and t is not a numeral.
21. Computation rules II ( ti , ρ ↓ vi )i=1,...,m

εm(t1, . . . , tm), ρ+ ↓ ε εm ( tj , ρ ↓ vj )j=1,...,m proji m (t1, . . . , tm), ρ+ ↓ v∗ i proji m t, ρ ↓ ⊥ u1, ρ ↓ v1 u2, ρ ↓ v2 p(⊥, u1, u2), ρ+ ↓ v∗ 1 p t, ρ ↓ u1, ρ ↓ v1 u2, ρ ↓ v2 p( , u1, u2), ρ+ ↓ v∗ 2 p
22. Computation rules III t, ρ ↓ v u, ρ ↓

w bit(t, u), ρ ↓ b bit where b is determined by bit(ε, w) = ⊥ if w = ∗ bit(bv, ε) = b bit(bv, b w) = bit(v, w). If bit(v, w) function is undeﬁned, we often write bit(v, w) = ∗. If bit(v, w) = ∗, we put b = ρ(bit(t, u)).
23. Computation rules IV For Boolean connectives t, ρ ↓ b

!t, ρ ↓ !b ! t1, ρ ↓ b1 t2, ρ ↓ b2 t1&t2, ρ ↓ b1&b2 & ⊥, ρ ↓ ⊥ ⊥ , ρ ↓ If f is deﬁned by composition, we have the following rule. g(y, ξ ↓ z h1(x), ν ↓ w1 · · · hm(x), ν ↓ wm ( ti , ρ ↓ vi )i=1,...,n f (t1, . . . , tn), ρ+ ↓ z∗ where y = y1, . . . , ym, x = x1, . . . , xn, ν(xi ) = vi , i = 1, . . . , n and ξ(yj ) = wj , j = 1, . . . , m.
24. Computation rules V If f is deﬁned by recursion, we

have the following rules. gε(x1, . . . , xn), ξ ↓ z t, ρ ↓ ε ( ti , ρ ↓ vi )i=1,...,n f (t, t1, . . . , tn), ρ+ ↓ z∗ rec-ε where ξ(xi ) = vi for i = 1, . . . , n. gb(x0, y, x), ξ ↓ z t, ρ ↓ bv0 f (x0, x), ν ↓ w ( tj , ρ ↓ vj )j=1,...,n f (t, t1, . . . , tn), ρ+ ↓ z∗ where b = 0, 1 and x = x1, . . . , xn. The environment ν is deﬁned by ν(xj ) = vj for j = 1, . . . , n and ν(x0) = v0 while ξ is deﬁned by ξ(xj ) = vj , ξ(x0) = v0, ξ(y) = w.
25. Complexity of computations Deﬁnition For a computation σ, C(σ) is

the minimum value which satisﬁes nodes(σ) ≤ C(σ) size(t) ≤ C(σ) if t, ρ ↓ v ∈ σ nodes(v) ≤ C(σ) if t, ρ ↓ v ∈ σ
26. Basic properties - computation of successors Lemma (S1 2 )

If ε, ρ ↓ v is contained in a computation σ, then either v ≡ ε or v ≡ ∗. If bt, ρ ↓ v where t is not a numeral, is contained in σ, then either v ≡ bv0 for some g-value v0 or v ≡ ∗. If v ≡ bv0, then σ contains t, ρ∗ ↓ v0 and v0 v0. Proof. Induction on σ
27. Basic properties - computation of numerals Lemma (S1 2 )

If v, ρ ↓ w, in which v are a numeral, is contained in a computation σ, then v w. Proof. Only rules which can derive v, ρ ↓ w are ∗ and v-rules.
28. Maximal environment Deﬁnition (maximal environment) For an environment ρ and

a term of type W, we deﬁne V (t, ρ) = {v | σ t, ρ ↓ v, C(σ) ≤ nodes(t) · U} vals(t, ρ) = {v ∈ V (t, ρ) | v ∈ V (t, ρ), v v =⇒ v = v} ρ is maximal if ρ(t) ∈ vals(t, ξ) and ρ(bit(a, b)) = bit(ρ(a), ρ(b)) if bit(ρ(a), ρ(b)) = ∗. Env(ρ, t, U) ⇐⇒ ρ is a maximal environment . Env(ρ, t, U) is a bounded formula.
29. Substitution into ρ Lemma Let ρ be a maximal environment.

Then, there is a maximal environment ρ such that ρ (x) = ρ(u) ρ(t(u)) ρ (t(x))
30. Basic properties - compatibility lemma Deﬁnition is deﬁned as v

w ⇐⇒ either v w or w v ρ1 ρ2 ⇐⇒ ρ1(t) ρ2(t) for any t ∈ dom(ρ1) ∩ dom(ρ2) For Boolean b1, b2, deﬁne b1 b2 ⇐⇒ b1 = b2 Lemma (S2: Compatibility lemma) Let ρ1 and ρ2 be maximal environments which satisfy ρ1 ρ2, t be the term. If both of t, ρ1 ↓ v and t, ρ2 ↓ w are contained in computations σ and τ respectively, then v w.
31. Most accurate evaluation in σ Deﬁnition Compatibility lemma allows extracting

the most “accurate” value v(t, ρ, σ) of t evaluated in a maximal environment ρ from a computation
32. Basic properties - substitution lemma I Lemma (S2, Substitution Lemma

I) Let ρ, ρ be maximal environments ρ is an extension of ρ ρ (xi ) = wi ρ (bit(r(x), s(x))) = ρ(bit(r(u), s(u))) σ t1(u1, . . . , un), ρ ↓ v1, . . . , tm(u1, . . . , un), ρ ↓ vm. =⇒ ∃τ t1(x), ρ ↓ v1, . . . , tm(x), ρ ↓ vm. s.t. C(τ) ∈ C(σ) + m j=1 size(tj (ε, . . . , ε))
33. Basic properties - substitution lemma II Lemma (S2, Substitution Lemma

II) Let ρ, ρ be maximal environments s.t. ρ is an extension of ρ ρ (xi ) = wi ρ (bit(r(x), s(x))) = ρ(bit(r(u), s(u))) σ t1(x1, . . . , xn), ρ ↓ v1, . . . , tm(x1, . . . , xn), ρ ↓ vm =⇒ ∃τ t1(u1, . . . , un), ρ ↓ v1, . . . , tm(u1, . . . , un), ρ ↓ vm s.t. C(τ) ≤ max(C(σ) + m j=1 size(tj (ε, . . . , ε)), M(τ)).
34. Basic properties - deﬁning and Boolean axioms Lemma t =

u : substitution instance of an axiom σ t, ρ ↓ v, α =⇒ ∃τ u, ρ ↓ v, α s.t. C(τ) ≤ C(σ) + size(t = u)
35. Consistency proof - preliminaries Deﬁnition [q1/x1] · · · [qd

/xd ], d ≤ D is called substitution sequence if x1, . . . , xd are all diﬀerent dom(ξ) = {x1, . . . , xd } ξ(t) ≡ t[qd /xd ] · · · [q1/x1] B(ξ) = max{size(ξ(xi )) | i = 1, . . . , d} ξ : η is the concatenation of ξ and η Env(ρ, t, U): ρ is a maximal environment or t. U is the same U in the deﬁnittion of maximal environments.
36. Consistency proof - Sat relation for equality Deﬁnition U, B

be integers such that U ≥ 2B ρ a maximal environment α judgements ξ be a substitution sequence such that B(ξ) ≤ (U − B)d Sat(U, B, ξ, ρ, α, t = u) ⇐⇒ ∀σ ξ(t), ρ ↓ v, α s.t. C(σ) ≤ (U − B)D+2, ∃τ ξ(u), ρ ↓ v, α s.t. C(τ) ≤ C(σ) + BD+2 and the ymmetric clause
37. Consistency proof - Sat relation for quantiﬁers Deﬁnition For universal,

Sat(U, B, ξ, ρ, α, {x}(z1, . . . , zm), Γ =⇒ φ) ⇐⇒ ∀q, B([q/x] : ξ) ≤ (U − B)d , s.t. FV(q) ⊆ {z1, . . . , zm}, Sat(U, B, [q/x] : ξ, ρ, α, Γ =⇒ φ) For existential, Sat(U, B, ξ, ρ, α, x(z1, . . . , zm), Γ =⇒ φ) ⇐⇒ B ≤ ∀B ≤ U/2, ∃q, B([q/x] : ξ) ≤ (U − B )d s.t. FV(q) ⊆ {z1, . . . , zm}, Sat(U, B , [q/x] : ξ, ρ, α, Γ =⇒ φ)
38. Consistency proof - properties of Sat Lemma (S2, monotonicity) If

B1 ≤ B2, Sat(U, B1, ξ, ρ, α, S) =⇒ Sat(U, B2, ξ, ρ, α, S) Lemma (S2, substitution for Sat) Let p be a term such that ξ(q) = q. ∀ρ, Env(ρ, UD+2) → Sat(U, B, ξ, ρ, α, t(x) = u(x)) =⇒ ∀ρ, Env(ρ, UD+2) → Sat(U, B + size(t(ε) = u(ε)), ξ, ρ, α, t(q) = u(q))
39. Consistency proof - soundness theorem Theorem (S2, soundness) a proof

χ of PV− q (D) of S ≡ Q =⇒ φ an integer U s.t. U ≥ 2size(χ) a substitution sequence η ≡ [q1/x1] · · · [qd /xd ] s.t. B(η) ≤ (U − size(χ))d a sequence of statements α s.t. M(α) ≤ (U − size(χ))D+2 where M(α) is the maximum size of terms appearing in α. Then, Sat(U, size(χ), η, ρ, α, S) holds.
40. Proof of soundness theorem - transitivity rule Q1 =⇒ t

= u Q2 =⇒ u = r Q1, Q2 =⇒ t = r u Env(ρ, UD+2) =⇒ Sat(U, size(χ1), η1, ρ, α, t = u) (IH), Env(ρ, UD+2) =⇒ Sat(U, size(χ2), η2, ρ, α, u = s) (IH). By substitution lemma for Sat, Env(ρ, UD+2) =⇒ Sat(U, size(χ1) + size(η2(t)), η1, ρ, α, η2(t) = η2(u))), Env(ρ, UD+2) =⇒ Sat(U, size(χ2) + size(η1(u)), η2, ρ, α, η1(u) = η1(s))). Because η1 : η2 = η2 : η1, 1 Sat(U, size(χ1) + size(η2(t)), η1 : η2, ρ, α, t = u)) 2 Sat(U, size(χ2) + size(η1(u)), η1 : η2, ρ, α, u = s)) Combining 1 and 2, Sat(U, size(χ), η1 : η2, ρ, α, t = s))
41. Proof of soundness theorem - universal quantiﬁcation Q =⇒ t(x)

= u(x) {x}(x), Q =⇒ t(x) = u(x) For q, B([q/x] : ξ) ≤ (U − size(χ))d+1 s.t. FV(q) ⊆ {x}. By induction hypothesis, ∀ρ, Env(UD+2, ρ) → Sat(U, B, ξ, ρ, α, t(x) = u(x)) By substitution Sat(U, size(χ1) + size(t(ε) = u(ε)), ξ, ρ, α, t(q) = u(q)) Therefore, Sat(U, size(χ), [q/x] : ξ, ρ, α, t(x) = u(x))
42. PV1 - axioms A PV1-proof is a tree of sequents

built by following axioms and rules. The subsystem PV1(D) is a system in which for all sequents Γ =⇒ ∆, the number of quantiﬁers plus the number of equations is bounded by D. t = u =⇒ t = u =⇒ t = t t = u =⇒ u = t t = u, u = s =⇒ t = s t1 = u1, . . . , tm = um =⇒ f (t1, . . . , tm) = f (u1, . . . , um) if f (x1, . . . , xm) = t is a deﬁning axiom, =⇒ f (u1, . . . , um) = t(u1, . . . , um)
43. PV1 - structural and propositional rules Γ =⇒ ∆ φ,

Γ =⇒ ∆ Γ =⇒ ∆ Γ =⇒ ∆, φ φ, φ, Γ =⇒ ∆ φ, Γ =⇒ ∆ Γ =⇒ ∆, φ, φ Γ =⇒ ∆, φ φi , Γ =⇒ ∆ φ1 ∧ φ2, Γ =⇒ ∆ (i = 1, 2) Γ =⇒ ∆, φ1 Σ =⇒ Π, φ2 Γ, Σ =⇒ ∆, Π, φ1 ∧ φ2 Γ =⇒ ∆, φ ¬φ, Γ =⇒ ∆ φ, Γ =⇒ ∆ Γ =⇒ ∆, ¬φ
44. PV1 - predicate and cut rules φ(t), Γ =⇒ ∆

∀x.φ(x), Γ =⇒ ∆ Γ =⇒ ∆, φ(x) Γ =⇒ ∆, ∀x.φ(x) if x ∈ FV(Γ, ∆) φ(x), Γ =⇒ ∆ ∃x.φ(x), Γ =⇒ ∆ if x ∈ FV(Γ, ∆) Γ =⇒ ∆, φ(t) Γ =⇒ ∆, ∃x.φ(x) Γ =⇒ ∆, φ φ, Σ =⇒ Π Γ, Σ =⇒ ∆, Π
45. Embedding of PV− 1 (D) into PV− q (D) Deﬁnition

Let φ1 ≡ Q1 =⇒ t1 = and φ2 ≡ Q2 =⇒ t2 = . Deﬁne φ⊥ ≡ Q⊥ =⇒ !t = ⊥ φ1 ∧ φ2 ≡ Q1, Q2 =⇒ t1&t2 = [⊥]q ≡ ⊥ = [t = u]q ≡ {i}(FV(t), FV(u)) =⇒ bit(t, i) ↔ bit(u, i) = [¬φ]q ≡ [φ]⊥ q [φ1 ∧ φ2]q ≡ [φ1]q ∧ [φ2]q [∀x.φ]q ≡ {x}(FV(φ)), [φ]q [∃x.φ]q ≡ x(FV(φ)), [φ]q.
46. Soundness of embedding of PV− 1 (D) into PV− q

(D) Theorem (S2, Soundness of embedding) PV− 1 (D) φ1, . . . , φn =⇒ ψ1, . . . , ψm implies PV− q (D) [¬φ1 ∨ · · · ∨ ¬φn ∨ ψ1 ∨ · · · ∨ ψm]q
47. Soundness proof of embedding - contraction We need to prove

[ψ ∨ φ]q from [ψ ∨ φ ∨ φ]q. Let [ψ]q ≡ Q1 =⇒ t = [φ]q ≡ Q2 =⇒ u = Q1, Q2, Q2 =⇒ t||u||u = Assume Q2 ≡ Q3, y(x). Q1, Q3, y(x), Q3 , y (x ) =⇒ t||u||u = . Let q(z) = p(z, y, y ). Q1, Q3, y(x), Q3 , y (x ) =⇒ t||u[q(u)/y] = Q1, Q3, Q3 , y(x), y (x ), z(x, y, y ) =⇒ t||u(z) = Q1, Q3, Q3 , z(x, x ), y(x), y (x) =⇒ t||u(z) = Q1, Q3, Q3 , z(x, x ) =⇒ t||u(z) = For the case Q2 ≡ Q3, {z}(x), the proof is easy.
48. Consistency of PV− 1 (D) + Ax : I Theorem

(S2) Let A1 be the universal closure of conjunction of Ax. If A1 can be written in the language of PV− 1 (D), S2 proves the consistency of PV− 1 (D) + A1. To prove the theorem, we use the following lemma. Lemma (S1 2 , Sound evaluation) Let t(x1, . . . , xn) be a term of type and ρ be an exact maximal environment. Assume that t(ρ(x1), . . . , ρ(xn)) = d in the standard interpretation. Then, there is a computation σ such that σ t, ρ ↓ d and nodes(σ) ≤ Pt(B(ρ)) for a polynomial Pt. Let P be a polynomial such that P(|n1| + · · · + |nm|) ≥ |t(n1, . . . , nm)| for any term t which appears in Ax.
49. Proof of consistency of PV− 1 (D) + Ax :

II Argue inside S2. A1 is embedded into PV− q (D) as tA1 = . If PV− 1 (D) + Ax is inconsistent, we have PV− q (D) i1, . . . , im =⇒ tA1 (i1, . . . , im) = ⊥ Let U as UD ≥ P(size(π)D+2). Soundness of PV− q (D) and by deﬁnition of Sat, Sat(U, size(π), ρ, tA1 (u1, . . . , um) = ⊥) for any maximal environment ρ. Because ⊥ has the obvious computation, there is a computation σ of tA1 (u1, . . . , um), ρ ↓ ⊥.
50. Proof of consistency of PV− 1 (D) + Ax :

III Claim (Construction of ρe and ρ) Assume that u1, u2, . . . , um are ordered by increasing order of their sizes. Then, there are maximal environments ρ and ρe such that ρe is an exact maximal environment for x1, . . . , xm. ρe(t(x1, . . . , xm)) ρ(t(u1, . . . , um)) for any subterm t of tA1 Proof. By induction on t and sound evaluation lemma.
51. Proof of consistency of PV− 1 (D) + Ax :

IV Proof of the theorem. There is a computation σ of tA1 (u1, . . . , um), ρ ↓ ⊥. ρe(tA1 (x1, . . . , xm) ρ(tA1 (u1, . . . , um)) = ⊥ Because A1 is true, there is a computation τ of tA1 (x1, . . . , xm), ρe ↓ . Therefore, ρe , ⊥. Contradiction.
52. Beckmann, A. (2002). Proving consistency of equational theories in bounded

arithmetic. Journal of Symbolic Logic, 67(1):279–296. Buss, S. R. (1986). Bounded arithmetic. Bibliopolis. Buss, S. R. and Ignjatovi´ c, A. (1995). Unprovability of consistency statements in fragments of bounded arithmetic. Annals of pure and applied Logic, 74:221–244. Cook, S. A. (1975). Feasibly constructive proofs and the propositional calculus (preliminary version).
53. In Proceedings of seventh annual ACM symposium on Theory of

computing, pages 83–97. ACM. Krynicki, M. and Mostowski, M. (1995). Henkin quantiﬁers. In Quantiﬁers: logics, models and computation, pages 193–262. Springer. Takeuti, G. (1996). Incompleteness theorems and Si 2 versus Si+1 2 . In Logic Colloquium ’96: Proceedings of the Colloquium held in San Sebasti´ an, Spain, July 9-15, 1996, volume 12 of Lecture notes in logic, pages 247–261. Yamagata, Y. (2018). Consistency proof of a fragment of pv with substitution in bounded arithmetic. The Journal of Symbolic Logic, 83(3):1063–1090.