Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Shoe Recognition Model with Floor Pressure Sens...
Search
yumulab
November 06, 2024
Research
0
4
Shoe Recognition Model with Floor Pressure Sensors (Slide)
2024年11月3日(日)〜7日(木)に開催されたSENSORCOMM2024の発表資料(スライド)
yumulab
November 06, 2024
Tweet
Share
More Decks by yumulab
See All by yumulab
デジタルファブリケーションの未来を北海道・札幌から考える / SIAF School 2025
yumulab
0
62
入浴時に映像が投影される一人用足湯システムの開発と運用 / ipsjhokkaido2024
yumulab
0
71
NNEPS: Network-Updated E-Paper Signage with Reduced Standby Power Consumption (Poster)
yumulab
0
61
NNEPS: Network-Updated E-Paper Signage with Reduced Standby Power Consumption (Slide)
yumulab
0
9
Shoe Recognition Model with Floor Pressure Sensors (Poster)
yumulab
0
39
湯村研究室の紹介2024 / yumulab2024
yumulab
0
380
Practices of Research and Education using Digital Fabrication Technologies
yumulab
0
33
Utilization of Fabrication Technology for Prototyping and Creation
yumulab
0
34
ASMR動画に合わせて撫でられる感覚を提示するシステムの検討
yumulab
0
160
Other Decks in Research
See All in Research
Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
satai
3
150
Satellite Sunroof: High-res Digital Surface Models and Roof Segmentation for Global Solar Mapping
satai
3
130
o1 pro mode の調査レポート
smorce
0
110
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
240
Whoisの闇
hirachan
3
290
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
5
1.1k
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
330
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1.3k
Batch Processing Algorithm for Elliptic Curve Operations and Its AVX-512 Implementation
herumi
0
100
メタヒューリスティクスに基づく汎用線形整数計画ソルバーの開発
snowberryfield
3
770
Weekly AI Agents News! 1月号 アーカイブ
masatoto
1
160
PostgreSQLにおける分散トレーシングの現在 - 第50回PostgreSQLアンカンファレンス
seinoyu
0
230
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Designing for humans not robots
tammielis
250
25k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Designing for Performance
lara
604
68k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Documentation Writing (for coders)
carmenintech
67
4.6k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
410
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Transcript
Shoe Recognition Model with Floor Pressure Sensors Sora Kamimura *1
Tetsuo Yutani *2 Atsuko Shibuya *2 Tsubasa Yumura *1 *1 Hokkaido Information University *2 FirstFourNotes, LLC <%FNP>
Table of contents #BDLHSPVOE1VSQPTF 1SFTTVSFTFOTPS .PEFM
%BUBTFUT 3FTVMU%JTDVTTJPO $PODMVTJPO
#BDLHSPVOE1VSQPTF 5SB ffi D fl PXBOBMZTJT #ZDBNFSB 4VSWFJMMBODFDBNFSBTDBOCFEJWFSUFE $BONBOBHFBMBSHFBSFBCZPOFDBNFSB *OWBTJPOPGQSJWBDZ
#MJOETQPUTDBVTFECZPCTUBDMFT ɾ*NQSPWFEXPSLF ffi DJFODZ ɾ"WPJESJTL DPMMJTJPOT GBMMT FUDʜ #Z fl PPSQSFTTVSFTFOTPS /PQSJWBDZJTTVF /PCMJOETQPUT
#BDLHSPVOE1VSQPTF 5SB ff i D fl PXBOBMZTJTCBTFE fl PPSQSFTTVSFTFOTPS SFRVJSFTJEFOUJ
fi DBUJPOPGQFPQMF )VNBOJEFOUJ fi DBUJPOVTFT XFJHIU TUSJEFMFOHUI TQFFE TIPFUZQF FUD *OUIJTTUVEZ XFEFWFMPQUIF TIPFSFDPHOJUJPONPEFMXJUI fl PPSQSFTTVSFTFOTPST
1SFTTVSFTFOTPS .BUFSJBMT ɾ7FMPTUBU QSFTTVSFTFOTJUJWFDPOEVDUJWFTIFFU ɾ$PQQFSGPJMUBQF ɾ"SEVJOP 4USVDUVSF ɾ$PQQFSGPJMUBQFTBSFNNXJEFBOE ɹTQBDFENNBQBSU ɾUBQFTCPUIWFSUJDBMMZBOEIPSJ[POUBMMZ
ɾNFBTVSFNFOUQPJOUT ɾ.FBTVSFUIFWPMUBHFBUFBDIQPJOUFWFSZNT
.PEFM ɾ5IF*OQVUMBZFSSFDFJWFTSBXEBUB ɾ5IFIJEEFOMBZFSJTUISFFGVMMZDPOOFDUFEMBZFS ɾ5IFPVUQVUMBZFSXJMMPVUQVUUIFTIPFJEFOUJ fi DBUJPOFTUBCMJTINFOU ɹ TOFBLFS SPPNTIPF BOETBOEBM
/FVSBMOFUXPSLNPEFM
%BUBTFUT )PXUPDPMMFDU $BMJCSBUJPOUIFTFOTPS 1VUPOTIPF 8BJUBGFXTFDPOET TPST
.FBTVSFNFOUT .FBTVSFNFOUTUJNFT JOFBDITIPF %BUB5ZQF ɾ&BDITFOTPS ʙ PS.FSHFE ɾ)PXMPOHXBJUGPSNFBTVSF TPST ɾ/PSNBMPS3PUBUFEEFHSFFTGPS ɹEBUBBVHNFOUBUJPO
3FTVMU ɾ5IF'NFBTVSFJOTJT ɹIJHIFSUIBOT ˠ7JCSBUJPOTBOEPUIFSOPJTFTJT ɹMFTTCZXBJUJOH ɾ*OTFDPOET UIF'NFBTVSFPG ɹNFSHFEEBUBJTIJHIFSUIBO ɹFBDITFOTPSEBUB ˠ5IFTFOTPSIBTBTFOTJUJWJUZCJBT
ɹ"OE NPEFMDBOUMFBSOJUCZ ɹFBDITFOTPSEBUB ɹ#VUMFBSOJOHCFDBNFQPTTJCMFCZ ɹNFSHFEEBUB 'NFBTVSF F = 2 × precision × recall precision + recall
$PODMVTJPO ɾ*OUIJTTUVEZ XFEFWFMPQFEUIFOFVSBMOFUXPSLNPEFMUPSFDPHOJ[F ɹTIPFUZQFTXJUI fl PPSQSFTTVSFTFOTPSXJUIB7FMPTUBU ɾ6TJOHBSPUBUFEEBUBTFUQSPWFEUPCFUIFNPTUF ff FDUJWFBQQSPBDIGPS ɹSFBMXPSMEBQQMJDBUJPOT
ɾ5IFSFBSFMBSHFEJ ff FSFODFCFUXFFOUIFFYQFSJNFOUBMFOWJSPONFOU ɹBOEUIFBTTVNFESFBMFOWJSPONFOU ɾ5IFSFBSFQSPCMFNTTVDIBTSFBDUJPOSBUFBOEBMMPXBCMFQSFTTVSF ɾ8FXJMMDPOUJOVFUPEFWFMPQCPUIIBSEXBSFBOETPGUXBSFUPTPMWF ɹUIFTFQSPCMFNT