Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Shoe Recognition Model with Floor Pressure Sens...
Search
yumulab
November 06, 2024
Research
0
41
Shoe Recognition Model with Floor Pressure Sensors (Slide)
2024年11月3日(日)〜7日(木)に開催されたSENSORCOMM2024の発表資料(スライド)
yumulab
November 06, 2024
Tweet
Share
More Decks by yumulab
See All by yumulab
研究室から社会へ 〜 情報科学でつなぐ科学技術コミュニケーション実践 / #CoSTEP20th
yumulab
0
52
A Proposal of an Information Delivery Method using Human Movement as a Communication Medium for Electronic Paper Signage / ICEC2025
yumulab
0
10
メタバース空間で対話相⼿に向かって⾃律移動するAIアバター『ノア』の開発 / EC2025-Oyamada
yumulab
0
25
足位置の視覚的提示による電子オルガンのペダル鍵盤演奏学習支援システムの提案 / EC2025-Hokin
yumulab
0
21
電子ペーパーサイネージにおける人の移動を通信媒介とした情報配送手法の提案 / EC2025-Akiba
yumulab
0
16
フィジカルコンピューティングでアイデアをカタチに! / hiu-physcom
yumulab
0
38
大学内にファブスペースをつくってみた #sapporo3dp / Making HIU Fab
yumulab
1
68
感圧導電シートを用いた床面圧力センサによる人物同定手法の開発 / HCI213
yumulab
0
15
ASSADS:ASMR動画に合わせて撫でられる感覚を提示するシステムの開発と評価 / ec75-shimizu
yumulab
1
570
Other Decks in Research
See All in Research
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
160
CoRL2025速報
rpc
1
2.1k
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
400
20250624_熊本経済同友会6月例会講演
trafficbrain
1
690
Language Models Are Implicitly Continuous
eumesy
PRO
0
300
投資戦略202508
pw
0
570
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
260
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
110
Submeter-level land cover mapping of Japan
satai
3
420
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
280
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
360
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
120
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
910
Thoughts on Productivity
jonyablonski
70
4.9k
Building Applications with DynamoDB
mza
96
6.7k
The Pragmatic Product Professional
lauravandoore
36
6.9k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Visualization
eitanlees
149
16k
How STYLIGHT went responsive
nonsquared
100
5.8k
Writing Fast Ruby
sferik
629
62k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
980
Code Reviewing Like a Champion
maltzj
526
40k
Transcript
Shoe Recognition Model with Floor Pressure Sensors Sora Kamimura *1
Tetsuo Yutani *2 Atsuko Shibuya *2 Tsubasa Yumura *1 *1 Hokkaido Information University *2 FirstFourNotes, LLC <%FNP>
Table of contents #BDLHSPVOE1VSQPTF 1SFTTVSFTFOTPS .PEFM
%BUBTFUT 3FTVMU%JTDVTTJPO $PODMVTJPO
#BDLHSPVOE1VSQPTF 5SB ffi D fl PXBOBMZTJT #ZDBNFSB 4VSWFJMMBODFDBNFSBTDBOCFEJWFSUFE $BONBOBHFBMBSHFBSFBCZPOFDBNFSB *OWBTJPOPGQSJWBDZ
#MJOETQPUTDBVTFECZPCTUBDMFT ɾ*NQSPWFEXPSLF ffi DJFODZ ɾ"WPJESJTL DPMMJTJPOT GBMMT FUDʜ #Z fl PPSQSFTTVSFTFOTPS /PQSJWBDZJTTVF /PCMJOETQPUT
#BDLHSPVOE1VSQPTF 5SB ff i D fl PXBOBMZTJTCBTFE fl PPSQSFTTVSFTFOTPS SFRVJSFTJEFOUJ
fi DBUJPOPGQFPQMF )VNBOJEFOUJ fi DBUJPOVTFT XFJHIU TUSJEFMFOHUI TQFFE TIPFUZQF FUD *OUIJTTUVEZ XFEFWFMPQUIF TIPFSFDPHOJUJPONPEFMXJUI fl PPSQSFTTVSFTFOTPST
1SFTTVSFTFOTPS .BUFSJBMT ɾ7FMPTUBU QSFTTVSFTFOTJUJWFDPOEVDUJWFTIFFU ɾ$PQQFSGPJMUBQF ɾ"SEVJOP 4USVDUVSF ɾ$PQQFSGPJMUBQFTBSFNNXJEFBOE ɹTQBDFENNBQBSU ɾUBQFTCPUIWFSUJDBMMZBOEIPSJ[POUBMMZ
ɾNFBTVSFNFOUQPJOUT ɾ.FBTVSFUIFWPMUBHFBUFBDIQPJOUFWFSZNT
.PEFM ɾ5IF*OQVUMBZFSSFDFJWFTSBXEBUB ɾ5IFIJEEFOMBZFSJTUISFFGVMMZDPOOFDUFEMBZFS ɾ5IFPVUQVUMBZFSXJMMPVUQVUUIFTIPFJEFOUJ fi DBUJPOFTUBCMJTINFOU ɹ TOFBLFS SPPNTIPF BOETBOEBM
/FVSBMOFUXPSLNPEFM
%BUBTFUT )PXUPDPMMFDU $BMJCSBUJPOUIFTFOTPS 1VUPOTIPF 8BJUBGFXTFDPOET TPST
.FBTVSFNFOUT .FBTVSFNFOUTUJNFT JOFBDITIPF %BUB5ZQF ɾ&BDITFOTPS ʙ PS.FSHFE ɾ)PXMPOHXBJUGPSNFBTVSF TPST ɾ/PSNBMPS3PUBUFEEFHSFFTGPS ɹEBUBBVHNFOUBUJPO
3FTVMU ɾ5IF'NFBTVSFJOTJT ɹIJHIFSUIBOT ˠ7JCSBUJPOTBOEPUIFSOPJTFTJT ɹMFTTCZXBJUJOH ɾ*OTFDPOET UIF'NFBTVSFPG ɹNFSHFEEBUBJTIJHIFSUIBO ɹFBDITFOTPSEBUB ˠ5IFTFOTPSIBTBTFOTJUJWJUZCJBT
ɹ"OE NPEFMDBOUMFBSOJUCZ ɹFBDITFOTPSEBUB ɹ#VUMFBSOJOHCFDBNFQPTTJCMFCZ ɹNFSHFEEBUB 'NFBTVSF F = 2 × precision × recall precision + recall
$PODMVTJPO ɾ*OUIJTTUVEZ XFEFWFMPQFEUIFOFVSBMOFUXPSLNPEFMUPSFDPHOJ[F ɹTIPFUZQFTXJUI fl PPSQSFTTVSFTFOTPSXJUIB7FMPTUBU ɾ6TJOHBSPUBUFEEBUBTFUQSPWFEUPCFUIFNPTUF ff FDUJWFBQQSPBDIGPS ɹSFBMXPSMEBQQMJDBUJPOT
ɾ5IFSFBSFMBSHFEJ ff FSFODFCFUXFFOUIFFYQFSJNFOUBMFOWJSPONFOU ɹBOEUIFBTTVNFESFBMFOWJSPONFOU ɾ5IFSFBSFQSPCMFNTTVDIBTSFBDUJPOSBUFBOEBMMPXBCMFQSFTTVSF ɾ8FXJMMDPOUJOVFUPEFWFMPQCPUIIBSEXBSFBOETPGUXBSFUPTPMWF ɹUIFTFQSPCMFNT